AI-Based ‘Artificial Chemist’ Directs Automated Lab to Create Better MRI Contrast Agents

January 6, 2022

Artificial-intelligence algorithm developed on XSEDE-allocated systems promises better MRI agents with unprecedented speed of discovery

Jan. 6, 2022 — Using XSEDE-allocated supercomputers, scientists at Carnegie Mellon University (CMU) have created an “artificial chemist,” a computer program that mimics the expertise of human chemists. The artificial intelligence (AI) system is capable of directing an automated laboratory to synthesize new contrast agents for medical MRI imaging. The new contrast agents, thanks to the AI, have a ratio of signal-to-noise as much as 50% higher than previous state-of-the-art, human-designed materials. This performance boost offers the possibility of more detailed medical scans of the human body, improving diagnosis.

Thanks to the back-and-forth between the CMU AI’s exploration of improved MRI contrast agents (left) and lab testing of the candidates by a robotic instrument (center), the work produced 397 candidates with improved performance compared with known contrast agents. Surprisingly, while as expected the best-performing of these candidates had a high number of fluorine-19 atoms in their structure, they showed better performance than known contrast agents with more of the element (right).

The CMU team, led by prof. Olexandr Isayev, built their AI using advanced research computers at XSEDE resources the Pittsburgh Supercomputing Center (PSC) and the Texas Advanced Computing Center (TACC). The robotic lab instrument is located at the University of North Carolina at Chapel Hill (UNC). The collaborators plan to develop the software so that it’s capable of more general chemical design for other applications in medicine, chemistry and materials science.

Why It’s Important

New chemical compounds – particularly a type of chemical called a polymer, which is made up of smaller building blocks called monomers – are a mainstay of advancement in chemistry, medicine, computing and other fields. A major limitation in this field, though, is that humans, who learn from each other, may be in “ruts,” working the same way they always have and not seeing promising alternatives. The CMU-led team wanted to create a general-purpose AI chemist that could teach itself how to select combinations of  monomers, avoiding human bias.

“Previous efforts in materials discovery have relied on either luck or human intuition, which both suffer from inherent biases and limitations in knowledge,” said Olexandr Isayev at CMU.

To create an AI chemist that could forge new paths in synthetic chemistry, the scientists used an approach called automated machine learning. The first step in the process is the usual one of selecting the best performer from a large group of possible machine learning models. The scientists then refine the winning model by real-world testing of the resulting contrast-agent candidates in the UNC lab, putting the results of that testing back into the AI. By going back and forth between the computer and the lab, the AI could correct its mistakes and biases.

The overall project posed serious challenges. The first was a truly vast number of possible polymers that could be produced by the automated lab’s reagent set. Unlike working with simulated or historical data, the development of an AI algorithm plus acquiring new data on the fly by real experiments required taking into account the cost and number of experiments. To some extent, the team could control this by giving the AI a limited set of reagents – but even for a small set of six organic monomers, the space of possible experiments was over 50,000. The CMU team would need powerful computing resources. They would also have to refine the AI model in repeated training steps to cover the huge multidimensionality of the problem in search of the best-performing polymers while conducting only a small fraction of possible experiments. To overcome this challenge, they turned to XSEDE.

How XSEDE Helped

XSEDE supplied the group with access to powerful supercomputers containing graphics processing units, or GPUs. These processors were originally designed to create realistic images for computer gaming. But their unique capabilities for “parallel computing” proved to be ideal for AI research. Starting in 2012, a GPU revolution swept the AI field, powering many of the groundbreaking AI tools we now take for granted.

PSC’s XSEDE-allocated Bridges-2 system, as well as the NSF Petascale Computing Resource Frontera at TACC, offered the team powerful new GPUs to “train” the AI, as well as the massive memory (RAM) needed to keep track of the problem’s multidimensionality.

Filipp Gusev, a graduate student in Isayev’s group in the joint CMU-University of Pittsburgh PhD Program in Computational Biology, designed the AI software in a way that didn’t rely on historically biased knowledge as experienced by humans. Instead, in a process called machine learning, or ML, it started with a small “training set” of successful MRI contrast agents to use as a starting point for the model. By acquiring new information in a process called active learning, the AI tested its predictions of what made a polymer a good contrast agent against a “testing set” of polymers whose effectiveness weren’t labeled, correcting itself when it predicted wrongly and requesting new data. Finally, exploring the chemistry of a representative group of synthesized polymers selected by AI without human supervision, it came up with its own set of rules.

The work was enabled by the robotic system built by the Frank Leibfarth group at UNC Chapel Hill. Leibfarth’s group  had built an automated continuous-flow system designed to build polymers that can be used to create plastics, packaging and a number of useful materials. The lab provides the “hands” of the operation. The “brain” was supplied by the Isayev team’s AI. Graduate student Marcus Reis of Leibfarth’s group was the co-first author for the work from UNC.

“Even a small model space leads to intensive computing requirements. Because the calculations are done over a set of classes of machine learning models exhaustively to get maximum information from the data and repeated on each refinement after getting new data, we needed a lot of computing power. [XSEDE] helped us speed up this project,” said Filipp Gusev at CMU.

Through a series of eight refinements, Gusev’s AI was able to narrow a potential 50,000 polymers to a list of only 397 experimentally synthesized. Iterating between the computer and the lab identified the best performing of these candidates. These performed as much as 50% better than current MRI contrast agents.

These winning candidates posed a surprise to the human chemists. Clinical MRI works by detecting changes in a strong magnetic field created by substances in the human body. One family of MRI contrast agents uses the isotope fluorine-19 (19F), which has the ability to interact with dissolved oxygen in body fluids. This interaction can be detected in a strong magnetic field and tells doctors where oxygen is concentrated in living tissues.

Scientists had long thought that more is better in terms of 19F solution concentration – the more 19F atoms that a contrast agent could pack in a smaller space, the better. But 19F also makes the polymer less soluble in water – and if the polymer can’t be dissolved, it can’t be injected.

The leading candidates the AI picked did contain enough 19F to create a strong signal. As they had hoped, the AI had found a “Goldilocks” point of just enough to give a strong signal while still being soluble, a point that humans had not predicted. The result offers hope that AI-guided design can create chemical tools that surpass what human experts can design.

The CMU team reported their results in a paper in the Journal of the American Chemical Society in November, 2021. They would next like to extend the approach toward other types of polymers and organic materials.

O.I. acknowledges support from NSF CHE-1802789 and CHE- 2041108. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562. Specifically, it used the Bridges-2 system, which is supported by NSF award number ACI-1928147, at the Pittsburgh Supercomputing Center. This research is part of the Frontera computing project at the Texas Advanced Computing Center. Frontera is made possible by the National Science Foundation award OAC-1818253. F.L. acknowledges the UNC Department of Chemistry’s NMR Core Laboratory that provided expertise and instrumentation that enabled this study with support from the National Science Foundation (CHE-1828183 and CHE-0922858).


Source: Ken Chiacchia, Pittsburgh Supercomputing Center

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire