AI Program Running on an XSEDE Resource Overcomes Multiple Human Poker Champions

September 9, 2019

September 9, 2019 — Artificial intelligence (AI) research took a great leap forward when a Carnegie Mellon University computer program overcame the world’s best professional players in a series of six-player poker games. Experimenting with multi-player, “incomplete information” games offers more useful lessons for real-world problems such as security, business negotiations and cancer therapy than one-on-one, “complete information” games like chess or go. Running on the XSEDE-allocated Bridges system at the Pittsburgh Supercomputing Center, the Pluribus AI was the first to surpass humanity’s best at such a game.

Why It’s Important

It’s obvious, but it bears repeating: Life is not chess. In real-world problems, the pieces are not lined up neatly for all to see. Terrorists have secret plans. Businesspeople have undisclosed deal-breakers and hidden needs that can torpedo negotiations. Cancer cells evade the body and drug treatments by mutating their genes.

Poker may not be a perfect representation of these problems, but it’s a lot closer. Players keep their hands secret, and try to bluff and shift their strategies to keep opponents off-balance. In 2017, Carnegie Mellon’s School of Computer Science grad student Noam Brown and his faculty advisor Tuomas Sandholm broke through the barrier of such imperfect-information games. That’s when their artificial intelligence (AI) program, called Libratus, surpassed four of the world’s best humans in heads-up (two-player), no-limit Texas Hold’em poker, running on the XSEDE-allocated Bridges at the Pittsburgh Supercomputing Center. That victory had been the first in which an AI overcame top players in an incomplete-information game.

“Being unpredictable is a huge part of playing poker … you have to be unpredictable; you have to bluff. If you don’t have a strong hand you have to check; if you do have a strong hand you can’t tip off the other players. Humans are good at that; Pluribus is very good at that.”—Noam Brown, Facebook AI Research and Carnegie Mellon University.

One limitation of the earlier work was that the AI had only faced humans one-on-one. This is a far simpler game than the usual, multi-player poker game, in which a player has to change how to play a given combination of cards from hand to hand to deal with the shifting plays produced by multiple opponents’ strategies. At the time of Libratus’s victory, many experts felt that the multi-player game problem might not be winnable in the foreseeable future. Still, Brown (now at Facebook AI Research) and Sandholm felt it was worth a try. They essentially started over with their new project—but still used the power of Bridges to develop and run the new AI.

How XSEDE Helped

The transition from head-to-head to multi-player poker required a stronger AI approach than the researchers had used with Libratus. Like the earlier AI, Pluribus taught itself to play Texas Hold’em poker before facing the pros. Like Libratus, Pluribus also discovered strategies that humans do not normally employ. But Pluribus played and learned in a fundamentally different way than its predecessor.

Libratus had been designed to think through the entire remaining game when deciding each move. The Carnegie Mellon team realized that such a strategy would never work in multi-player poker because the game size would grow exponentially as the number of players increases. This was one reason why some experts thought the problem might not be solvable.

“You have to understand that opponents can adapt. If you only employ one strategy, you might be exploitable. In rock, paper, scissors, if we assume the other player is responding randomly, if you always throw rock you always break even. But when the other player adapts to always throwing paper, that strategy fails. Understanding that players can switch strategies is a big part of the game.”—Noam Brown, Facebook AI Research and Carnegie Mellon University.

The researchers took the good-enough strategy one step further. Would it be possible to stay ahead of multiple opponents if the AI only planned a few steps ahead, rather than to the end of the game? Such a “limited look-ahead” approach would save computing power to react to and overcome each opponent’s moves.

Pluribus compiled the data and trained itself running on one of Bridges’ large-memory nodes, each of which feature 3 terabytes of RAM—about 100 times that in a high-end laptop, and 20 times what is considered large memory on most supercomputers. Play took place on one of Bridges’ regular-memory nodes. Bridges also helped the Carnegie Mellon team by offering massive data storage.

“Many thought the multi-player game was not possible to win [by an AI]; others thought it would be too computationally expensive. I don’t think anybody thought it would be that cheap.”—Noam Brown, Facebook AI Research and Carnegie Mellon University.

While Pluribus used more power than available on commodity personal computers, its performance represented a huge savings in computing time over Libratus. The earlier AI used around 15 million core hours over two months to develop its strategies and 50 of Bridges’ powerful compute nodes to play. By comparison, Pluribus trained itself in eight days using 12,400 core hours and used just one node during live play. This promises that such AIs may be able to run on commodity computers in the not-too-distant future.

Pluribus used its limited-lookahead strategy in an online tournament from June 1 to 12, 2019, against a total of 13 poker champions, each of whom had won over $1 million in his poker career. The culmination of the Facebook-funded tournament was a series of 10,000 hands against five of the pros at once. Pluribus racked up a literally super-human win rate. The human players reported that the AI’s strategy was impossible to predict and it often made plays that experienced humans never do—probably because doing so successfully is too complicated for the human brain.


Source: Ken Chiacchia, Pittsburgh Supercomputing Center and the Extreme Science and Engineering Discovery Environment (XSEDE)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

When in Rome: AMD Announces New Epyc CPU for HPC, Server and Cloud Wins

September 18, 2019

Where else but Rome could AMD hold the official Europe launch party for its second generation of Epyc microprocessors, codenamed Rome. Today, AMD did just that announcing key server wins, important cloud provider wins Read more…

By John Russell

Dell’s AMD-Powered Server Line Targets High-End Jobs

September 17, 2019

Dell Technologies rolled out five new servers this week based on AMD’s latest Epyc processor that are geared toward data-driven workloads running on increasingly popular multi-cloud platforms as well as in the HPC data Read more…

By George Leopold

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

AWS Solution Channel

A Guide to Discovering the Best AWS Instances and Configurations for Your HPC Workload

The flexibility and heterogeneity of HPC cloud services provide a welcome contrast to the constraints of on-premises HPC. Every HPC configuration is potentially accessible to any given workload in a well-resourced cloud HPC deployment, with vast scalability to spin up as much compute as that workload demands in any given moment. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Rumors of My Death Are Still Exaggerated: The Mainframe

[Connect with Spectrum users and learn new skills in the IBM Spectrum LSF User Community.]

As of 2017, 92 of the world’s top 100 banks used mainframes. Read more…

Better Scientific Software: Turn Your Passion into Cash

September 13, 2019

Do you know your way around scientific software and programming? You think you can contribute to the community by making scientific software better? If so, then the Better Scientific Software (BSSW) organization wants yo Read more…

By Dan Olds

When in Rome: AMD Announces New Epyc CPU for HPC, Server and Cloud Wins

September 18, 2019

Where else but Rome could AMD hold the official Europe launch party for its second generation of Epyc microprocessors, codenamed Rome. Today, AMD did just that Read more…

By John Russell

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have Read more…

By Elizabeth Leake

Univa Brings Cloud Automation to Slurm Users with Navops Launch 2.0

September 11, 2019

Univa, the company behind Grid Engine, announced today its HPC cloud-automation platform NavOps Launch will support the popular open-source workload scheduler Slurm. With the release of NavOps Launch 2.0, “Slurm users will have access to the same cloud automation capabilities... Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

Eyes on the Prize: TACC’s Frontera Quickly Ramps up Science Agenda

September 9, 2019

Announced a year ago and officially launched a week ago, the Texas Advanced Computing Center’s Frontera – now the fastest academic supercomputer (~25 petefl Read more…

By John Russell

Quantum Roundup: IBM Goes to School, Delft Tackles Networking, Rigetti Updates

September 5, 2019

IBM today announced a new open source quantum ‘textbook’, a series of quantum education videos, and plans to expand its nascent quantum hackathon program. L Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This