AI Technique Works Double Duty Spanning Cosmic and Subatomic Scales in Argonne Research

October 4, 2019

Oct. 4, 2019 — High energy physics and cosmology seem worlds apart in terms of sheer scale, but the invisible components that comprise the field of one inform the composition and dynamics of the other — collapsing stars, star-birthing nebulae and, perhaps, dark matter.

For decades, the techniques by which researchers in both fields studied their domains seemed almost incompatible, as well. High energy physics relied on accelerators and detectors to glean some insight from the energetic interactions of particles, while cosmologists gazed through all manner of telescopes to unveil the secrets of the universe.

While neither has given up on the fundamental equipment of their particular field, physicists and cosmologists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory are attacking complex multi-scale problems using various forms of an artificial intelligence technique called machine learning.

Already used in numerous fields, machine learning can help identify hidden patterns by learning from input data and progressively improving predictions about new data. It can be applied to visual classification tasks or in the speedy reproduction of complicated and computationally expensive calculations.

With the potential to radically transform how science is conducted, these AI techniques will help us gain a better understanding of the distribution of galaxies throughout the universe or better visualize the formation of new particles from which we might infer new physics.

Over the decades, we have developed traditional algorithms that reconstruct the signatures of the various particles that we’re interested in,” saId Taylor Childers, a particle physicist and a computer scientist with the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science User Facility.

It’s taken a very long time to develop them and they’re very accurate,” he added. ​But at the same time, it would be interesting to know if image classification techniques from machine learning that have been used successfully by Google and Facebook can simplify or shorten the development of algorithms that identify particle signatures in our 3D detectors.”

Childers works with Argonne high-energy physicists, all of whom are members of the ATLAS experimental collaboration at CERN’s Large Hadron Collider (LHC), the largest and most powerful particle collider in the world. Looking to solve a wide range of physics problems, the ATLAS detector sits eight stories tall and 150 feet long at a point around the LHC’s 17-mile circumference collider ring, where it measures the products of protons colliding at velocities nearing the speed of light.

According to the ATLAS website, ​over a billion particle interactions take place in the ATLAS detector every second, a data rate equivalent to 20 simultaneous telephone conversations held by every person on the earth.”

While only a small percent of these collisions are deemed worthy of study — about a million per second — it still provides a mountain of data for scientists to investigate.

These high-speed particle collisions create new particles in their wake, like electrons or quark showers, each leaving a unique signature in the detector. It is these signatures that Childers would like to identify through machine learning.

Among the challenges is capturing those energy signatures as images in a complex 3D space. A photo, for example, is essentially a 2D representation of 3D data with vertical and horizontal positions. The pixel data, the colors in the image, are spatially oriented and have spatial information encoded in them — for instance, the eyes of a cat are next to the nose, and the ears are above to the left and the right.

So their spatial orientation is important. The same goes for the images that we take at the LHC. As a particle traverses our detector, it leaves an energy signature in spatial patterns that are specific to the different particles,” explained Childers.

Add to that the amount of data encoded in not only the signatures, but the 3D space around them. Where traditional machine learning examples for image recognition — those cats, again — deal with hundreds of thousands of pixels, ATLAS’s images contain hundreds of millions of detector pixels.

So the idea, he said, is to treat the detector images as traditional images. Using a machine learning technique called convolutional neural networks — which learn how data is spatially related — they can extract the 3D space to more easily identify specific particle features.

Childers hopes that these machine learning algorithms will eventually replace the traditional hand-made algorithms, greatly reducing the time it takes to process similar amounts of data as well as improving the precision of the measured results.

We can also replace the decade-long development needed for new detectors and reduce that with new training models for future detectors,” he said.

A larger space

Argonne cosmologists are using similar machine learning methods to address classification problems, but on a much larger scale.

The problem with cosmology is that the objects we’re looking at are complicated and fuzzy,” said Salman Habib, Division Director of Argonne’s Computational Science division and Interim Deputy Director of its High Energy Physics division. ​So describing data in a simpler way becomes very hard.”

He and his colleagues are leveraging supercomputers at Argonne and other DOE national laboratories to reconstruct the particulars of the universe, galaxy by galaxy. They are creating highly detailed simulated galaxy catalogs that can be used for comparison to real data taken from survey telescopes, like the Large Synoptic Survey Telescope, a partnership between the DOE and the National Science Foundation.

But to make these assets valuable to researchers, they must be as close to reality as possible.

Machine learning algorithms, Habib said, are very good at picking out features that can be easily characterized by geometry — like those cats. Yet, similar to the warning on vehicle mirrors, objects in the heavens are not always as they appear.

Take the phenomenon of strong gravitational lensing; the distortion of a background light source — a galaxy or a galaxy cluster — by an intervening mass. The deflection of the trajectories of light rays from the source due to gravity leads to a distortion of the background source’s shape, position and orientation; this distortion provides information on the mass distribution of the intervening object. The actual observational situation is not so straightforward, however.

A completely round blob that is lensed, for example, might appear stretched in one direction or another, while a round, unlensed disk-shaped object might look elliptical if viewed partially on edge.

So how do you know whether the object you’re looking at is not a round object that’s been rotated, or one that has been lensed?” asked Habib. ​These are the kinds of tricky things that machine learning has to be able to figure out.”

To do this, researchers create a training sample of millions of realistic looking objects, half of which are lensed. The machine learning algorithms then go about the work of trying to learn the differences between the lensed and unlensed objects. The results are verified against a known set of synthetic lensed and unlensed objects.

But the results only tell half the story — how well the algorithms work on test data. To further advance their accuracy for real data, researchers mix some percentage of synthetic data with previously observed data and run the algorithms, again, comparing how well they chose lensed objects in the training sample versus the combination data.

In the end, you might find that it does reasonably well, but maybe not as well as you want,” explained Habib. ​You might say ​OK, this information by itself is not going to be sufficient, I need to collect more.’ It’s quite a long and complex process.”

Two primary goals of modern cosmology, he said, are to understand why the expansion of the universe is accelerating and what the nature of the dark matter is. Dark matter is roughly five times as abundant as normal matter, but its ultimate origin remains mysterious. In order to get remotely close to an answer, the science must be very deliberate, very precise.

At the current stage, I don’t think we can solve all of our problems with machine learning applications,” admitted Habib. ​But I would say machine learning will be very important for all aspects of precision cosmology in the near future.”

As machine learning techniques are developed and refined, their usefulness to both high energy physics and cosmology is sure to grow exponentially, providing the hope of new discoveries or new interpretations that alter our understanding of the world on multiple scales.

Taylor Childers’ research is funded through the ALCF. His colleagues in HEP are funded by the DOE Office of HEP. Salman Habib’s work is funded through DOE’s ASCR and HEP program offices.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

About The U.S. Department of Energy’s Office of Science 

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science


Source: John Spizzirri, Argonne National Laboratory 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Alibaba Highlights COVID-19 Research Enabled by Its Cloud HPC

April 8, 2020

Many supercomputer centers are fast-tracking COVID-19-related proposals and prioritizing COVID-19-related jobs on their systems. For the researchers whose access to these systems is limited (or for whom time is too limit Read more…

By Oliver Peckham

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing ( Read more…

By John Russell

Ethernet Technology Consortium Launches 800 Gigabit Ethernet Specification

April 7, 2020

The newly rebranded Ethernet Technology Consortium (ETC), formerly known as the 25 Gigabit Ethernet Consortium, announced a new 800 Gigabit Ethernet specification and an expanded scope aimed at meeting the needs of perfo Read more…

By Tiffany Trader

Spanish Researchers Introduce HPC-Ready COVID-19 Spread Simulator

April 7, 2020

With governments in a mad scramble to identify the policies most likely to curb the spread of the pandemic without unnecessarily crippling the global economy, researchers are turning to AI and high-performance computing Read more…

By Oliver Peckham

Stony Brook Researchers to Run COVID-19 Simulations on Supercomputers

April 6, 2020

A wide range of supercomputers are crunching the infamous “spike” protein of the novel coronavirus, from Summit more than a month ago to [email protected] to a Russian cluster just a week ago. Read more…

By Staff report

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

What’s New in Computing vs. COVID-19: Fast-Tracked Research, Susceptibility Study, Antibodies & More

April 6, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems Read more…

By John Russell

Ethernet Technology Consortium Launches 800 Gigabit Ethernet Specification

April 7, 2020

The newly rebranded Ethernet Technology Consortium (ETC), formerly known as the 25 Gigabit Ethernet Consortium, announced a new 800 Gigabit Ethernet specificati Read more…

By Tiffany Trader

ECP Milestone Report Details Progress and Directions

April 1, 2020

The Exascale Computing Project (ECP) milestone report issued last week presents a good snapshot of progress in preparing applications for exascale computing. Th Read more…

By John Russell

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

LLNL Leverages Supercomputing to Identify COVID-19 Antibody Candidates

March 30, 2020

As COVID-19 sweeps the globe to devastating effect, supercomputers around the world are spinning up to fight back by working on diagnosis, epidemiology, treatme Read more…

By Staff report

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium- Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be Read more…

By John Russell

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Summit Joins the Fight Against the Coronavirus

March 6, 2020

With the coronavirus sweeping the globe, tech conferences and supply chains are being hit hard – but now, tech is hitting back. Oak Ridge National Laboratory Read more…

By Staff report

CINECA’s Carlo Cavazzoni Describes the Supercomputing Battle Against COVID-19

March 17, 2020

The latest episode of the This Week in HPC podcast features Carlo Cavazzoni, a senior staff member at CINECA, one of the leading supercomputing organizations in Europe. Intersect360 Research's Addison Snell spoke to Cavazzoni to discuss both CINECA's work using supercomputing to combat COVID-19 and Cavazzoni's personal experience living near the epicenter... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This