AI Technique Works Double Duty Spanning Cosmic and Subatomic Scales in Argonne Research

October 4, 2019

Oct. 4, 2019 — High energy physics and cosmology seem worlds apart in terms of sheer scale, but the invisible components that comprise the field of one inform the composition and dynamics of the other — collapsing stars, star-birthing nebulae and, perhaps, dark matter.

For decades, the techniques by which researchers in both fields studied their domains seemed almost incompatible, as well. High energy physics relied on accelerators and detectors to glean some insight from the energetic interactions of particles, while cosmologists gazed through all manner of telescopes to unveil the secrets of the universe.

While neither has given up on the fundamental equipment of their particular field, physicists and cosmologists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory are attacking complex multi-scale problems using various forms of an artificial intelligence technique called machine learning.

Already used in numerous fields, machine learning can help identify hidden patterns by learning from input data and progressively improving predictions about new data. It can be applied to visual classification tasks or in the speedy reproduction of complicated and computationally expensive calculations.

With the potential to radically transform how science is conducted, these AI techniques will help us gain a better understanding of the distribution of galaxies throughout the universe or better visualize the formation of new particles from which we might infer new physics.

Over the decades, we have developed traditional algorithms that reconstruct the signatures of the various particles that we’re interested in,” saId Taylor Childers, a particle physicist and a computer scientist with the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science User Facility.

It’s taken a very long time to develop them and they’re very accurate,” he added. ​But at the same time, it would be interesting to know if image classification techniques from machine learning that have been used successfully by Google and Facebook can simplify or shorten the development of algorithms that identify particle signatures in our 3D detectors.”

Childers works with Argonne high-energy physicists, all of whom are members of the ATLAS experimental collaboration at CERN’s Large Hadron Collider (LHC), the largest and most powerful particle collider in the world. Looking to solve a wide range of physics problems, the ATLAS detector sits eight stories tall and 150 feet long at a point around the LHC’s 17-mile circumference collider ring, where it measures the products of protons colliding at velocities nearing the speed of light.

According to the ATLAS website, ​over a billion particle interactions take place in the ATLAS detector every second, a data rate equivalent to 20 simultaneous telephone conversations held by every person on the earth.”

While only a small percent of these collisions are deemed worthy of study — about a million per second — it still provides a mountain of data for scientists to investigate.

These high-speed particle collisions create new particles in their wake, like electrons or quark showers, each leaving a unique signature in the detector. It is these signatures that Childers would like to identify through machine learning.

Among the challenges is capturing those energy signatures as images in a complex 3D space. A photo, for example, is essentially a 2D representation of 3D data with vertical and horizontal positions. The pixel data, the colors in the image, are spatially oriented and have spatial information encoded in them — for instance, the eyes of a cat are next to the nose, and the ears are above to the left and the right.

So their spatial orientation is important. The same goes for the images that we take at the LHC. As a particle traverses our detector, it leaves an energy signature in spatial patterns that are specific to the different particles,” explained Childers.

Add to that the amount of data encoded in not only the signatures, but the 3D space around them. Where traditional machine learning examples for image recognition — those cats, again — deal with hundreds of thousands of pixels, ATLAS’s images contain hundreds of millions of detector pixels.

So the idea, he said, is to treat the detector images as traditional images. Using a machine learning technique called convolutional neural networks — which learn how data is spatially related — they can extract the 3D space to more easily identify specific particle features.

Childers hopes that these machine learning algorithms will eventually replace the traditional hand-made algorithms, greatly reducing the time it takes to process similar amounts of data as well as improving the precision of the measured results.

We can also replace the decade-long development needed for new detectors and reduce that with new training models for future detectors,” he said.

A larger space

Argonne cosmologists are using similar machine learning methods to address classification problems, but on a much larger scale.

The problem with cosmology is that the objects we’re looking at are complicated and fuzzy,” said Salman Habib, Division Director of Argonne’s Computational Science division and Interim Deputy Director of its High Energy Physics division. ​So describing data in a simpler way becomes very hard.”

He and his colleagues are leveraging supercomputers at Argonne and other DOE national laboratories to reconstruct the particulars of the universe, galaxy by galaxy. They are creating highly detailed simulated galaxy catalogs that can be used for comparison to real data taken from survey telescopes, like the Large Synoptic Survey Telescope, a partnership between the DOE and the National Science Foundation.

But to make these assets valuable to researchers, they must be as close to reality as possible.

Machine learning algorithms, Habib said, are very good at picking out features that can be easily characterized by geometry — like those cats. Yet, similar to the warning on vehicle mirrors, objects in the heavens are not always as they appear.

Take the phenomenon of strong gravitational lensing; the distortion of a background light source — a galaxy or a galaxy cluster — by an intervening mass. The deflection of the trajectories of light rays from the source due to gravity leads to a distortion of the background source’s shape, position and orientation; this distortion provides information on the mass distribution of the intervening object. The actual observational situation is not so straightforward, however.

A completely round blob that is lensed, for example, might appear stretched in one direction or another, while a round, unlensed disk-shaped object might look elliptical if viewed partially on edge.

So how do you know whether the object you’re looking at is not a round object that’s been rotated, or one that has been lensed?” asked Habib. ​These are the kinds of tricky things that machine learning has to be able to figure out.”

To do this, researchers create a training sample of millions of realistic looking objects, half of which are lensed. The machine learning algorithms then go about the work of trying to learn the differences between the lensed and unlensed objects. The results are verified against a known set of synthetic lensed and unlensed objects.

But the results only tell half the story — how well the algorithms work on test data. To further advance their accuracy for real data, researchers mix some percentage of synthetic data with previously observed data and run the algorithms, again, comparing how well they chose lensed objects in the training sample versus the combination data.

In the end, you might find that it does reasonably well, but maybe not as well as you want,” explained Habib. ​You might say ​OK, this information by itself is not going to be sufficient, I need to collect more.’ It’s quite a long and complex process.”

Two primary goals of modern cosmology, he said, are to understand why the expansion of the universe is accelerating and what the nature of the dark matter is. Dark matter is roughly five times as abundant as normal matter, but its ultimate origin remains mysterious. In order to get remotely close to an answer, the science must be very deliberate, very precise.

At the current stage, I don’t think we can solve all of our problems with machine learning applications,” admitted Habib. ​But I would say machine learning will be very important for all aspects of precision cosmology in the near future.”

As machine learning techniques are developed and refined, their usefulness to both high energy physics and cosmology is sure to grow exponentially, providing the hope of new discoveries or new interpretations that alter our understanding of the world on multiple scales.

Taylor Childers’ research is funded through the ALCF. His colleagues in HEP are funded by the DOE Office of HEP. Salman Habib’s work is funded through DOE’s ASCR and HEP program offices.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

About The U.S. Department of Energy’s Office of Science 

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science


Source: John Spizzirri, Argonne National Laboratory 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” The newly announced SuperPods come just two years after the Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire