ALCC Program Awards 1.5 Billion Hours of Computing Time at ALCF

July 27, 2018

July 27, 2018 — The U.S. Department of Energy’s (DOE) ASCR Leadership Computing Challenge (ALCC) has awarded 20 projects a total of 1.5 billion core-hours at the Argonne Leadership Computing Facility (ALCF), located at DOE’s Argonne National Laboratory, to pursue challenging, high-risk, high-payoff simulations.

The Advanced Scientific Computing Program (ASCR), which manages some of the world’s most powerful supercomputing facilities, selects projects every year in areas directly related to the DOE mission for broadening the community of researchers capable of using leadership computing resources, and serving national interests for the advancement of scientific discovery, technological innovation, and economic competitiveness.

The ALCC program allocates up to 20 percent of the computational resources at ASCR’s supercomputing facilities to research scientists in industry, academia, and national laboratories. In addition to ALCF, ASCR’s supercomputing facilities include Oak Ridge Leadership Computing Facility (OLCF) at Oak Ridge National Laboratory and the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. The ALCF, OLCF, and NERSC are DOE Office of Science User Facilities.

The 20 projects awarded time at the ALCF are noted below. Some projects received additional computing time at OLCF and/or NERSC. The awards began on July 1.

  • Ruth Van De Water from Fermi National Accelerator Laboratory received 247 million core-hours for “Semileptonic B- and D-Meson Form Factors with High-Precision.”
  • Robert Voigt from Leidos, Inc. received 100 million core-hours for “Demonstration of the Scalability of Programming Environments by Simulating Multi-Scale Applications.”
  • Peter Nugent from Lawrence Berkeley National Laboratory received 20 million core-hours for “HPC4 Energy Innovation ALCC End-Station.”
  • Brian Wirth from Oak Ridge National Laboratory and the University of Tennessee received 80 million core-hours for “Modeling Fusion Plasma Facing Components.”
  • Thomas Blum from the University of Connecticut received 162 million core-hours for “Hadronic Light-by-Light Scattering and Vacuum Polarization Contributions to the Muon Anomalous Magnetic Moment from Lattice QCD with Chiral Fermions.”
  • Eric Lancon from Brookhaven National Laboratory received 80 million core-hours for “Scaling LHC Proton-Proton Collision Simulations in the ATLAS Detector.”
  • T.P. Straatsma from Oak Ridge National Laboratory received 30 million core-hours for “Portable Application Development for Next-Generation Supercomputer Architectures Consortium/End-Station.”
  • Elia Merzari from Argonne National Laboratory received 140 million core-hours for “High-Fidelity Simulation for Molten Salt Reactors: Enabling Innovation through Petascale Computing.”
  • Igor Bolotnov from North Carolina State University received 130 million core-hours for “Multiphase Flow Simulations of Nuclear Reactor Flows.”
  • Mark Petersen from Los Alamos National Laboratory received 35 million core-hours for “Investigating the Impact of Improved Southern Ocean Processes in Antarctic-Focused Global Climate Simulations.”
  • Giulia Galli from the University of Chicago and Argonne National Laboratory received 100 million core-hours for “Large-Scale Simulations of Heterogeneous Materials for Energy Conversion Applications Consortium/End-Station.”
  • Phay Ho from Argonne National Laboratory received 90 million core-hours for “Imaging and Controlling Elemental Contrast of Nanocluster in Intense X-Ray Pulses.”
  • Aleksandr Obabko from Argonne National Laboratory received 83.5 million core-hours for “High-Fidelity Numerical Simulation of Wire-Wrapped Fuel Assemblies: Year 2.”
  • J. Ilja Siepmann from the University of Minnesota received 42 million core-hours for “Predictive Modeling and Machine Learning for Functional Nanoporous Materials Consortium/End-Station.”
  • Anupam Sharma from Iowa State University received 51.5 million core-hours for “Analysis and Mitigation of Dynamic Stall in Energy Machines.”
  • Katrin Heitmann from Argonne National Laboratory received 10 million core-hours for “Emulating the Universe.”
  • Sergey Syritsyn from RIKEN BNL Research Center received 50 million core-hours for “Nucleon Structure and Electric Dipole Moments with Physical Chiral-Symmetric Quarks.”
  • Paul Fischer from Argonne National Laboratory received 30 million core-hours for “High-Fidelity Simulations of Flow and Heat Transfer During Motored Operation of an Internal Combustion Engine.”
  • Petros Tzeferacos from the University of Chicago received 22 million core-hours for “Simulations of Laser Experiments to Study MHD Turbulence and Non-Thermal Charged Particles.”
  • Wissam Saidi from the University of Pittsburgh received 20 million core-hours for “Impact of Grain Boundary Defects on Hybrid Perovskite Solar Absorbers.”

The complete list of 2018-2019 ALCC projects can be found here.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.


Source: ALCF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire