ALCC Program Awards One Billion Hours on OLCF Resources

August 8, 2017

Aug. 8 — Each year, projects at the Oak Ridge Leadership Computing Facility (OLCF)—a US Department of Energy (DOE) Office of Science User Facility located at DOE’s Oak Ridge National Laboratory (ORNL)—are awarded computing hours through the DOE Office of Advanced Scientific Computing Research Leadership Computing Challenge (ALCC). The projects selected are aligned with ALCC’s mission to provide computing resources to high-risk, high-return simulations within energy-related areas of study.

The ALCC program provides high-performance computing resources such as America’s fastest supercomputer, Titan, to projects that align with DOE’s energy mission. The program allocates up to 30 percent of the computational resources at the OLCF and the Argonne Leadership Computing Facility, as well as up to 10 percent at the National Energy Research Scientific Computing Center.

These 1 year awards assist scientists from industry, academia, and national laboratories who work to advance scientific and technological energy research. Past ALCC project recipients have contributed to scientific discovery in the studies of energy efficiency, physics, materials science, and computer science.

ALCC allocations for 2017 continue in the tradition of innovation and discovery with projects awards ranging from 2 million to 300 million processor hours. Specific awards on Titan went to projects such as the following:

Particle Physics. A team led by Gabriel Perdue of the College of William & Mary has been allotted 110 million hours on Titan to increase understanding of neutrino masses. One of the fundamental particles that make up our universe, neutrinos are copiously produced in high-energy collisions, most notably, the Big Bang. By studying these tiny particles, scientists can shed light on how our universe was formed and further develop theory residing within quantum physics.

The DOE Particle Physics Project Prioritization Panel (P5) has highlighted the physics of neutrino masses as one of five “Science Drivers,” or lines of inquiry that show great promise for discovery. Consistent with P5’s push to promote understanding of the nature and ordering of neutrino masses, Perdue and his team seek to establish whether neutrinos and their counterparts, antineutrinos, differ in oscillation.

Thanks to advances in computing hardware—in this case, Titan’s GPUs—computers have surpassed humans in their ability to recognize patterns in high-energy event collisions. Perdue’s team is using Titan’s deep learning capability to improve the reconstruction of high-energy events, allowing for more detailed and accurate analysis of neutrinos.

Energy. More than one-quarter of the electrical power generated in the United States begins with the operation of gas turbines. These systems are an efficient and flexible source of electric power that can be operated on fuels such as natural gas, a fuel that is considered more environmentally friendly than traditional fossil fuels such as coal because if its lower carbon dioxide emissions. General Electric (GE), a world leader in industrial power generation technology and the world’s largest supplier of gas turbines, is using Titan to model one of the more complex problems in operating such turbines—turbulence.

A team led by Gregory Laskowski of GE Aviation is using Titan to trace the intricate flow of air that moves through the energy-creating turbine blades. Even a small reduction in turbulence enabled through modeling can greatly increase operational efficiency, further saving fuel costs and reducing CO2 emissions.

Laskowski’s team is using machine learning techniques on Titan to develop more affordable turbulence simulation methods to be used in future turbine designs.

Exascale Computing. In 2016, DOE created the Exascale Computing Project (ECP) with the goal of developing an exascale system by the year 2021. “Exascale” refers to computing systems at least 50 times faster than the nation’s most powerful supercomputers in use today. The project’s work encompasses the development of an entire exascale ecosystem: applications, system software, hardware technologies, and architectures, along with critical workforce development.

The 2017 ALCC allocation for ECP awards time at all three of the Advanced Scientific Computing Research program’s user facilities: the OLCF, the National Energy Research Scientific Computing Center, and the Argonne Leadership Computing Facility. This allocation allows the project to support approximately 100 sub-projects dedicated to realizing exascale capability through new system software, program models, and algorithms. The accomplishments of these sub-projects will ensure the meeting of development milestones of the ECP.


Source: Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire