ALCF Data Science Program Selects Projects for 2021-2022

May 24, 2021

May 24, 2021 — The Argonne Leadership Computing Facility (ALCF) recently awarded computing time and resources to three new projects and one renewed project for 2021-2022, through its ALCF Data Science Program (ADSP).

Launched in 2016, the ADSP enables big data and artificial intelligence (AI) research that requires DOE’s leadership-class computing resources. The forward-looking allocation program is designed to explore and improve computational methods for data-driven discoveries across scientific disciplines. It also focuses on scaling the underlying data science technologies to fully utilize DOE supercomputers. The ALCF is a U.S. Department of Energy (DOE) Office of Science User Facility at DOE’s Argonne National Laboratory.

The new projects — which aim to accelerate autonomous molecular design, data analysis in neutrino experiments, and sky survey discovery — extract science from a range of unique data sources. The project selected for renewal will address challenges in fast, high-resolution X-ray imaging at the Advanced Photon Source (APS), a DOE Office of Science User Facility located at Argonne. Each project will employ leadership-class systems and infrastructure to develop and advance data science techniques, with novel approaches to machine learning, deep learning, and other cutting-edge AI methods.

“This year’s ADSP awards advance the use of artificial intelligence on ALCF systems beyond standalone networks to multi-network workflows integrated in scientific analysis chains,” said Taylor Childers, ALCF research scientist and co-lead of the ADSP program this year. “In addition, unsupervised techniques are targeting our upcoming system Polaris, which is ideal for deep learning applications and will serve as a testbed for our future exascale supercomputer, Aurora.”

ADSP awards are for two years and are renewed on an annual basis.

New ADSP projects

Autonomous Molecular Design for Redox Flow Batteries

Principal investigator: Logan Ward, Argonne National Laboratory

Redox flow batteries can easily be scaled up to store large amounts of energy, making them a promising technology for electrical grid storage. The batteries work by storing energy in large tanks of electrolyte solutions, but they are currently limited by the performance of available electrolyte materials. With tens of millions of potential candidate molecules, scientists need an improved method to speed the discovery of optimal materials for redox flow batteries. The goal of this project is to build an autonomous AI application for supercomputers that can select and perform the simulation and machine learning tasks needed to identify better-performing molecules. Achieving this goal will require scaling individual tasks, such as computing material properties and training AI models, and then combining them into a cohesive application that will remove humans from the materials design process.

Machine Learning for Data Reconstruction to Accelerate Physics Discoveries in Accelerator-Based Neutrino Oscillation Experiments

Principal investigator: Marco Del Tutto, Fermi National Accelerator Laboratory (Fermilab)

The liquid argon time projection chamber (LArTPC) is an imaging detector that can record charged particle trajectories at sub-millimeter spatial resolution. It allows scientists to measure neutrino interactions with high precision, making it the detector of choice for current and future accelerator neutrino experiments, including Fermilab’s Short-Baseline Neutrino Program and Deep Underground Neutrino Experiment. A major goal of this project is to accelerate the analysis workflow in LArTPC experiments by orders of magnitude by deploying the first machine learning-based full reconstruction chain on a high-performance computing (HPC) system. The optimization of a traditional data reconstruction pipeline in these experiments is done “by hand,” and can take months to years each time researchers need to reprocess the whole dataset. The team’s goal is to reduce this process to hours using the ALCF’s upcoming Polaris system. This effort will accelerate the analysis pipeline, perhaps even enabling a full physics analysis online, allowing for more frequent and deeper inference of physics insights from experimental data.

Learning Optimal Image Representations for Current and Future Sky Surveys

Principal investigator: George Stein, Lawrence Berkeley National Laboratory

Sky surveys are the largest data generators in astronomy, imaging vast numbers of galaxies at high resolutions. To date, machine learning investigations of sky-survey data have provided a large number of high-impact results, including the detection of a large number of strongly gravitationally lensed systems and the classification of millions of galaxies. However, existing methods used in the field of astrophysics suffer from the standard limitations of supervised learning; they require extensive compute resources and development time to target singular objectives, and the performance is limited by the small amount of labeled data on which to train models. With this ADSP project, the team will use their recently developed self-supervised learning framework to extract meaningful representations from galaxy images in the Dark Energy Camera Legacy Survey dataset, providing a scalable data-driven approach capable of learning from unlabeled data. The team’s work aims to serve the broader community by accelerating sky survey discoveries following the release of image representations, trained models, and software. Researchers will be able to simply download the low-dimensional representations of galaxies to perform scientific analysis, or use the team’s pre-trained model and quickly fine-tune it to carry out a specific task.

Renewed ADSP project

Dynamic Compressed Sensing for Real-Time Tomographic Reconstruction

Principal investigator: Robert Hovden, University of Michigan

Using electron and X-ray tomography to perform 3D characterization of materials at the nano- and mesoscale is important to the development of a wide range of applications, including solar cells and semiconductor devices. To overcome experimental limitations and improve image quality in materials characterization research, researchers are leveraging recent advancements in tomographic reconstruction algorithms, such as compressed sensing methods, to provide superior 3D resolution. In the first year of this ADSP project, researchers developed a dynamic tomography framework that uses compressed sensing algorithms to perform in-situ reconstruction while new data is being collected. In year two, the team will continue to conduct comprehensive simulations for real-time electron tomography and develop reconstruction methods for through-focal tomography, an approach that enhances resolution by combining images captured at different levels of focus. They will experimentally demonstrate the reconstruction workflow and methods on commercial scanning transmission electron microscopes and the ptychographic tomography instruments at the APS. By integrating their tool with an open-source 3D visualization and tomography software package, the team’s techniques will be accessible to a wide range of researchers and enable new material characterizations in academia and industry.

About the Argonne Leadership Computing Facility 

The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines. Supported by the U.S. Department of Energy’s (DOE’s) Office of Science, Advanced Scientific Computing Research (ASCR) program, the ALCF is one of two DOE Leadership Computing Facilities in the nation dedicated to open science.

About the Advanced Photon Source

The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

About the U.S. Department of Energy’s Office of Science

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://​ener​gy​.gov/​s​c​ience.


Source: ALCF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Market, Though Small, will Grow 22% and Hit $1.5B in 2026

December 7, 2023

Few markets as small as the quantum information sciences market generate as much lively discussion. Hyperion Research pegged the worldwide quantum market at $848 million for 2023 and expects it to reach ~$1.5 billion in Read more…

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed its new Instinct MI300X GPU is the fastest AI chip in the worl Read more…

Finding Opportunity in the High-Growth “AI Market” 

December 6, 2023

 “What’s the size of the AI market?” It’s a totally normal question for anyone to ask me. After all, I’m an analyst, and my company, Intersect360 Research, specializes in scalable, high-performance datacenter Read more…

Imagine a Beowulf Cluster of SuperNODEs …
(They did)

December 6, 2023

Clustering resources for faster performance is not new. In the early days of clustering, the Beowulf project demonstrated that high performance was achievable from commodity hardware. These days, the "Beowulf cluster mem Read more…

The IBM-Meta AI Alliance Promotes Safe and Open AI Progress

December 5, 2023

IBM and Meta have co-launched a massive industry-academic-government alliance to shepherd AI development. The new group has united under the AI Alliance banner to promote responsible innovation in AI. Historically, techn Read more…

AWS Solution Channel

Shutterstock 2030529413

Reezocar Rethinks Car Buying Using Computer Vision and ML on AWS

Overview

Every car that finds its way to a landfill marks another dent in the fight for a sustainable future. Reezocar, an online hub for buying and selling used cars, has a mission to change this. Read more…

QCT Solution Channel

QCT and Intel Codeveloped QCT DevCloud Program to Jumpstart HPC and AI Development

Organizations and developers face a variety of issues in developing and testing HPC and AI applications. Challenges they face can range from simply having access to a wide variety of hardware, frameworks, and toolkits to time spent on installation, development, testing, and troubleshooting which can lead to increases in cost. Read more…

ChatGPT Friendly Programming Languages
(hello-world.llm)

December 4, 2023

 Using OpenAI's ChatGPT to write code is an alluring goal. Describing "what to" solve, but not "how to solve" would be a huge breakthrough in computer programming. Alas, we are nowhere near this capability. In particula Read more…

Quantum Market, Though Small, will Grow 22% and Hit $1.5B in 2026

December 7, 2023

Few markets as small as the quantum information sciences market generate as much lively discussion. Hyperion Research pegged the worldwide quantum market at $84 Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Finding Opportunity in the High-Growth “AI Market” 

December 6, 2023

 “What’s the size of the AI market?” It’s a totally normal question for anyone to ask me. After all, I’m an analyst, and my company, Intersect360 Res Read more…

Imagine a Beowulf Cluster of SuperNODEs …
(They did)

December 6, 2023

Clustering resources for faster performance is not new. In the early days of clustering, the Beowulf project demonstrated that high performance was achievable f Read more…

The IBM-Meta AI Alliance Promotes Safe and Open AI Progress

December 5, 2023

IBM and Meta have co-launched a massive industry-academic-government alliance to shepherd AI development. The new group has united under the AI Alliance banner Read more…

Shutterstock 1336284338

ChatGPT Friendly Programming Languages
(hello-world.llm)

December 4, 2023

 Using OpenAI's ChatGPT to write code is an alluring goal. Describing "what to" solve, but not "how to solve" would be a huge breakthrough in computer programm Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

The Annual SCinet Mandala

November 30, 2023

Perhaps you have seen images of Tibetan Buddhists creating beautiful and intricate images with colored sand. These sand mandalas can take weeks to create, only Read more…

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

Leading Solution Providers

Contributors

SC23 Booth Videos

Achronix @ SC23
AMD @ SC23
AWS @ SC23
Altair @ SC23
CoolIT @ SC23
Cornelis Networks @ SC23
CoreHive @ SC23
DDC @ SC23
HPE @ SC23 with Justin Hotard
HPE @ SC23 with Trish Damkroger
Intel @ SC23
Intelligent Light @ SC23
Lenovo @ SC23
Penguin Solutions @ SC23
QCT Intel @ SC23
Tyan AMD @ SC23
Tyan Intel @ SC23
HPCwire LIVE from SC23 Playlist

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire