ALCF Highlights Its Contributions to the High-Tech Evolution of Scientific Computing

July 31, 2018

July 31, 2018 — Science has always relied on a combination of approaches to derive an answer or develop a theory. The seeds for Darwin’s theory of natural selection grew under a Herculean aggregation of observation, data, and experiment. The more recent confirmation of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) was a decades-long interplay of theory, experiment, and computation.

Certainly, this idea was not lost on the U.S. Department of Energy’s (DOE) Argonne National Laboratory, which has helped advance the boundaries of high-performance computing technologies through the Argonne Leadership Computing Facility (ALCF).

Realizing the promise of exascale computing, the ALCF is developing the framework by which to harness this immense computing power to an advanced combination of simulation, data analysis, and machine learning. This effort will undoubtedly reframe the way science is conducted, and do so on a global scale.

Since the ALCF was established in 2006, the methods used to collect, analyze and employ data have changed dramatically. Where data was once the product of and limited by physical observation and experiment, advances in feeds from scientific instrumentation such as beamlines, colliders, and space telescopes—just to name a few—have increased data output substantially, giving way to new terminologies, like “big data.”

While the scientific method remains intact and the human instinct to ask big questions still drives research, the way we respond to this new windfall of information requires a fundamental shift in how we use emerging computing technologies for analysis and discovery.

This convergence of simulation, data, and learning is driving an ever-more complex but logical feedback loop.

Increased computational capability supports larger scientific simulations that generate massive datasets used to feed a machine learning process, the output of which informs further and more precise simulation. This, too, is further augmented by data from observations, experiments, etc., to refine the process using data-driven approaches.

“While we have always had this tradition of running simulations, we’ve been working incrementally for more than a few years now to robustly integrate data and learning,” says Michael Papka, ALCF director and deputy associate laboratory director for Computing, Environment and Life Sciences (CELS).

To advance that objective, the facility launched its ALCF Data Science Program in 2016 to explore and improve computational methods that could better enable data-driven discoveries across scientific disciplines. The ALCF also recently expanded its Aurora Early Science Program with the addition of 10 new projects that will help prepare the facility’s future exascale supercomputer for data and learning approaches.

And earlier this year, the CELS directorate announced the creation of the Computational Science (CPS) and Data Science and Learning (DSL) divisions to explore challenging scientific problems through advanced modeling and simulation, and data analysis and other artificial intelligence methods, respectively.

“These combined efforts will focus on domain sciences and identify important problems that can be addressed through a combination of simulation, data science, and machine learning approaches. In many cases, we’ll be drawing on people with relevant expertise across multiple divisions,” says CPS director Paul Messina.

Already, this combination of programs and entities is being tested and proved through studies that cross the scientific spectrum, from understanding the origins of the universe to deciphering the neural connectivity of the brain.

Convergence for a brighter future

Data has always been a key driver in science and yes, it’s true that there is an exponentially larger amount than there was, say, ten years ago. But while the size and complexity of the data now available poses challenges, it is also providing opportunities for new insights.

No doubt Darwin’s research was big data for its time, but it was the culmination of nearly 30 years of painstaking collection and analysis. He might have whittled the process considerably had he had access to high-performance computers, and data analysis and machine learning techniques, such as data mining.

“These techniques don’t fundamentally change the scientific method, but they do change the scale or the velocity or the kind of complexity you can deal with,” notes Rick Stevens, CELS associate laboratory director and University of Chicago professor.

Take, for example, research into new materials designed to generate solar power as sunlight passes through windows. The technology has been hampered for lack of the right dye molecule, the discovery of which requires the time-consuming task of searching through reams of chemistry literature to find molecules with the right parameters.

Chemist and physicist Jacqueline Cole leads a collaborative effort between Argonne and the University of Cambridge to bring such molecules to light. Cole has developed a multi-stage process that cycles through simulation; data extraction, enrichment, and mining; materials prediction and experimental validation.

The team runs large-scale simulations on targeted molecules to predict chemical dyes with key optical properties. From these data, molecules are selected for synthesis, and the resulting chemicals are fabricated into devices for validating their prospects in solar-powered windows. The results determine whether further investigation is required.

“There’s a positive feedback loop inherent in this,” she says. “Even if the validation process doesn’t go well, it can still provide some helpful insights. We might learn, for example, that we need to refine the structure-function relationships of the molecules for a particular application or add a new type of data to the existing data.”

A large part of the effort was focused on constructing a database of desirable organic molecules, much of which was compiled by data mining some 300,000 published research articles. The research was spurred by the Materials Genome Initiative, a government initiative to take functional materials to market much faster than the decades it once took.

“The advantage of this process is to really take away the old manual curation of databases, which is lifetimes of work, and reduce it to a matter of a few months. Ultimately, a few days,” says Cole.

One machine to bind them all

Whether it’s the search for very specific dye molecules or understanding key flow physics to develop more efficient wind turbine blades, the merging and flourishing of simulation, data, and learning is only possible because of the exponential and deliberate development of high-performance computing and data delivery systems.

“Supercomputer architectures are being structured to make them more amenable to dealing with large amounts of data and facilitate learning, in addition to traditional simulations,” says Venkat Vishwanath, ALCF data sciences lead. “And we are fitting these machines with massive conduits that allow us to stream large amounts of data from the outside world, like the Large Hadron Collider at CERN and our own Advanced Photon Source (APS) and enable data-driven models.”

Many current architectures still require the transfer of data from computer to computer, from one machine, the sole function of which is simulation, to another that excels in data analysis and/or machine learning.

Within the last few years, Argonne and the ALCF have made a solid investment in high-performance computing that gets them closer to a fully integrated machine. The process accelerated in 2017, with the introduction of the Intel-Cray system, Theta, which is capable of combining traditional simulation runs and machine learning techniques.

The ALCF will help drive simulation, data, and learning to a new level in 2021, when they unveil the nation’s first exascale machine, Aurora. While it can perform a billion billion calculations per second, its main advantage may be its ability to conduct and converge simulation, data analysis, and machine learning under one hood. The end result will allow researchers to approach new types as well as much larger problems and reduce time to solution.

“Aurora will change the game,” says the ALCF’s Papka. “We’re working with vendors Intel and Cray to assure that we can support science through this confluence of simulation, data, and learning all on day one of Aurora’s deployment.”

Whether by Darwin or Turing, whether with chalkboard or graph paper, some of the world’s great scientific innovations were the product of one or several determined individuals who well understood the weight of applying balanced and varied approaches to support—or refute—a hypothesis.

Because current innovation is driven by collaboration among colleagues and between disciplines, the potential for discovery through the pragmatic application of new computational resources, coupled with unrestrained data flow, staggers the imagination.

The ALCF and APS are DOE Office of Science user facilities.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.


Source: John Spizzirri, Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Democratization of HPC Part 3: Ninth Graders Tap HPC in the Cloud to Design Flying Boats

October 18, 2018

This is the third in a series of articles demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #208 on how Read more…

By Wolfgang Gentzsch and Håkon Bull Hove

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phase, on the near side of a difficult chasm to cross. In respon Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questions and, you won’t be surprised, offers a firm “it’s wo Read more…

By John Russell

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phas Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questio Read more…

By John Russell

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

NERSC-9 Clues Found in NERSC 2017 Annual Report

October 8, 2018

If you’re eager to find out who’ll supply NERSC’s next-gen supercomputer, codenamed NERSC-9, here’s a project update to tide you over until the winning bid and system details are revealed. The upcoming system is referenced several times in the recently published 2017 NERSC annual report. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This