ALCF Highlights Its Contributions to the High-Tech Evolution of Scientific Computing

July 31, 2018

July 31, 2018 — Science has always relied on a combination of approaches to derive an answer or develop a theory. The seeds for Darwin’s theory of natural selection grew under a Herculean aggregation of observation, data, and experiment. The more recent confirmation of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) was a decades-long interplay of theory, experiment, and computation.

Certainly, this idea was not lost on the U.S. Department of Energy’s (DOE) Argonne National Laboratory, which has helped advance the boundaries of high-performance computing technologies through the Argonne Leadership Computing Facility (ALCF).

Realizing the promise of exascale computing, the ALCF is developing the framework by which to harness this immense computing power to an advanced combination of simulation, data analysis, and machine learning. This effort will undoubtedly reframe the way science is conducted, and do so on a global scale.

Since the ALCF was established in 2006, the methods used to collect, analyze and employ data have changed dramatically. Where data was once the product of and limited by physical observation and experiment, advances in feeds from scientific instrumentation such as beamlines, colliders, and space telescopes—just to name a few—have increased data output substantially, giving way to new terminologies, like “big data.”

While the scientific method remains intact and the human instinct to ask big questions still drives research, the way we respond to this new windfall of information requires a fundamental shift in how we use emerging computing technologies for analysis and discovery.

This convergence of simulation, data, and learning is driving an ever-more complex but logical feedback loop.

Increased computational capability supports larger scientific simulations that generate massive datasets used to feed a machine learning process, the output of which informs further and more precise simulation. This, too, is further augmented by data from observations, experiments, etc., to refine the process using data-driven approaches.

“While we have always had this tradition of running simulations, we’ve been working incrementally for more than a few years now to robustly integrate data and learning,” says Michael Papka, ALCF director and deputy associate laboratory director for Computing, Environment and Life Sciences (CELS).

To advance that objective, the facility launched its ALCF Data Science Program in 2016 to explore and improve computational methods that could better enable data-driven discoveries across scientific disciplines. The ALCF also recently expanded its Aurora Early Science Program with the addition of 10 new projects that will help prepare the facility’s future exascale supercomputer for data and learning approaches.

And earlier this year, the CELS directorate announced the creation of the Computational Science (CPS) and Data Science and Learning (DSL) divisions to explore challenging scientific problems through advanced modeling and simulation, and data analysis and other artificial intelligence methods, respectively.

“These combined efforts will focus on domain sciences and identify important problems that can be addressed through a combination of simulation, data science, and machine learning approaches. In many cases, we’ll be drawing on people with relevant expertise across multiple divisions,” says CPS director Paul Messina.

Already, this combination of programs and entities is being tested and proved through studies that cross the scientific spectrum, from understanding the origins of the universe to deciphering the neural connectivity of the brain.

Convergence for a brighter future

Data has always been a key driver in science and yes, it’s true that there is an exponentially larger amount than there was, say, ten years ago. But while the size and complexity of the data now available poses challenges, it is also providing opportunities for new insights.

No doubt Darwin’s research was big data for its time, but it was the culmination of nearly 30 years of painstaking collection and analysis. He might have whittled the process considerably had he had access to high-performance computers, and data analysis and machine learning techniques, such as data mining.

“These techniques don’t fundamentally change the scientific method, but they do change the scale or the velocity or the kind of complexity you can deal with,” notes Rick Stevens, CELS associate laboratory director and University of Chicago professor.

Take, for example, research into new materials designed to generate solar power as sunlight passes through windows. The technology has been hampered for lack of the right dye molecule, the discovery of which requires the time-consuming task of searching through reams of chemistry literature to find molecules with the right parameters.

Chemist and physicist Jacqueline Cole leads a collaborative effort between Argonne and the University of Cambridge to bring such molecules to light. Cole has developed a multi-stage process that cycles through simulation; data extraction, enrichment, and mining; materials prediction and experimental validation.

The team runs large-scale simulations on targeted molecules to predict chemical dyes with key optical properties. From these data, molecules are selected for synthesis, and the resulting chemicals are fabricated into devices for validating their prospects in solar-powered windows. The results determine whether further investigation is required.

“There’s a positive feedback loop inherent in this,” she says. “Even if the validation process doesn’t go well, it can still provide some helpful insights. We might learn, for example, that we need to refine the structure-function relationships of the molecules for a particular application or add a new type of data to the existing data.”

A large part of the effort was focused on constructing a database of desirable organic molecules, much of which was compiled by data mining some 300,000 published research articles. The research was spurred by the Materials Genome Initiative, a government initiative to take functional materials to market much faster than the decades it once took.

“The advantage of this process is to really take away the old manual curation of databases, which is lifetimes of work, and reduce it to a matter of a few months. Ultimately, a few days,” says Cole.

One machine to bind them all

Whether it’s the search for very specific dye molecules or understanding key flow physics to develop more efficient wind turbine blades, the merging and flourishing of simulation, data, and learning is only possible because of the exponential and deliberate development of high-performance computing and data delivery systems.

“Supercomputer architectures are being structured to make them more amenable to dealing with large amounts of data and facilitate learning, in addition to traditional simulations,” says Venkat Vishwanath, ALCF data sciences lead. “And we are fitting these machines with massive conduits that allow us to stream large amounts of data from the outside world, like the Large Hadron Collider at CERN and our own Advanced Photon Source (APS) and enable data-driven models.”

Many current architectures still require the transfer of data from computer to computer, from one machine, the sole function of which is simulation, to another that excels in data analysis and/or machine learning.

Within the last few years, Argonne and the ALCF have made a solid investment in high-performance computing that gets them closer to a fully integrated machine. The process accelerated in 2017, with the introduction of the Intel-Cray system, Theta, which is capable of combining traditional simulation runs and machine learning techniques.

The ALCF will help drive simulation, data, and learning to a new level in 2021, when they unveil the nation’s first exascale machine, Aurora. While it can perform a billion billion calculations per second, its main advantage may be its ability to conduct and converge simulation, data analysis, and machine learning under one hood. The end result will allow researchers to approach new types as well as much larger problems and reduce time to solution.

“Aurora will change the game,” says the ALCF’s Papka. “We’re working with vendors Intel and Cray to assure that we can support science through this confluence of simulation, data, and learning all on day one of Aurora’s deployment.”

Whether by Darwin or Turing, whether with chalkboard or graph paper, some of the world’s great scientific innovations were the product of one or several determined individuals who well understood the weight of applying balanced and varied approaches to support—or refute—a hypothesis.

Because current innovation is driven by collaboration among colleagues and between disciplines, the potential for discovery through the pragmatic application of new computational resources, coupled with unrestrained data flow, staggers the imagination.

The ALCF and APS are DOE Office of Science user facilities.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.


Source: John Spizzirri, Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AMD Epyc CPUs Now on Bare Metal IBM Cloud Servers

April 1, 2020

AMD’s expanding presence in the datacenter and cloud computing markets took a step forward with today’s announcement that its 7nm 2nd Gen Epyc 7642 CPUs are now available on IBM Cloud bare metal servers. AMD, whose Read more…

By Doug Black

Supercomputer Testing Probes Viral Transmission in Airplanes

April 1, 2020

It might be a long time before the general public is flying again, but the question remains: how high-risk is air travel in terms of viral infection? In an article for the Texas Advanced Computing Center (TACC), Faith Si Read more…

By Staff report

ECP Milestone Report Details Progress and Directions

April 1, 2020

The Exascale Computing Project (ECP) milestone report issued last week presents a good snapshot of progress in preparing applications for exascale computing. There are roughly 30 ECP application development (AD) subproj Read more…

By John Russell

Russian Supercomputer Employed to Develop COVID-19 Treatment

March 31, 2020

From Summit to [email protected], global supercomputing is continuing to mobilize against the coronavirus pandemic by crunching massive problems like epidemiology, therapeutic development and vaccine development. The latest a Read more…

By Staff report

What’s New in HPC Research: Supersonic Jets, Skin Modeling, Astrophysics & More

March 31, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium- Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be Read more…

By John Russell

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Conversation: ANL’s Rick Stevens on DoE’s AI for Science Project

March 23, 2020

With release of the Department of Energy’s AI for Science report in late February, the effort to build a national AI program, modeled loosely on the U.S. Exascale Initiative, enters a new phase. Project leaders have already had early discussions with Congress... Read more…

By John Russell

Servers Headed to Junkyard Find 2nd Life Fighting Cancer in Clusters

March 20, 2020

Ottawa-based charitable organization Cancer Computer is on a mission to stamp out cancer and other life-threatening diseases, including coronavirus, by putting Read more…

By Tiffany Trader

Kubernetes and HPC Applications in Hybrid Cloud Environments – Part II

March 19, 2020

With the rise of cloud services, CIOs are recognizing that applications, middleware, and infrastructure running in various compute environments need a common management and operating model. Maintaining different application and middleware stacks on-premises and in cloud environments, by possibly using different specialized infrastructure and application... Read more…

By Daniel Gruber,Burak Yenier and Wolfgang Gentzsch, UberCloud

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Summit Joins the Fight Against the Coronavirus

March 6, 2020

With the coronavirus sweeping the globe, tech conferences and supply chains are being hit hard – but now, tech is hitting back. Oak Ridge National Laboratory Read more…

By Staff report

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This