ALCF Research Benefits from Singularity

February 7, 2019

Feb. 7 — Scaling code for massively parallel architectures is a common challenge the scientific community faces. When moving from a system used for development—a personal laptop, for instance, or even a university’s computing cluster—to a large-scale supercomputer like those housed at the Argonne Leadership Computing Facility (ALCF), a U.S. Department of Energy (DOE) Office of Science User Facility, researchers traditionally would only migrate the target application: the underlying software stack would be left behind.

To help alleviate this problem, the ALCF has deployed the service Singularity. Singularity, an open-source framework originally developed by Lawrence Berkeley National Laboratory (LBNL) and now supported by Sylabs Inc., is a tool for creating and running containers (platforms designed to package code and its dependencies so as to facilitate fast and reliable switching between computing environments)—albeit one intended specifically for scientific workflows and high-performance computing (HPC) resources.

“There is a definite need for increased reproducibility and flexibility when a user is getting started here, and containers can be tremendously valuable in that regard. Supporting emerging technologies like Singularity is part of a broader strategy to provide users with services and tools that help advance science by eliminating barriers to productive use of our supercomputers,” said Katherine Riley, Director of Science at the ALCF.

The demand for such services has grown at the ALCF as a direct result of the HPC community’s diversification.

When the ALCF first opened, it was catering to a smaller user base representative of the handful of domains conventionally associated with scientific computing (high energy physics and astrophysics, for example). HPC is now a principal research tool in new fields such as genomics, which perhaps lack some of the computing culture ingrained in certain older disciplines. Moreover, researchers tackling problems in machine learning, for example, constitute a new community. This creates a strong incentive to make HPC more immediately approachable to users so as to reduce the amount of time spent preparing code and establishing migration protocols, and thus hasten the start of research.

This plot shows the number of events ATLAS events simulated (solid lines) with and without containerization. Linear scaling is shown (dotted lines) for reference. Credit: J. Taylor Childers, Argonne National Laboratory

Singularity, to this end, promotes strong mobility of compute and reproducibility due to the framework’s employment of a distributable image format. This image format incorporates the entire software stack and runtime environment of the application into a single monolithic file. Users thereby gain the ability to define, create, and maintain an application on different hosts and operating environments. Once a containerized workflow is defined, its image can be snapshotted, archived, and preserved for future use. The snapshot itself represents a boon for scientific provenance by detailing the exact conditions under which given data were generated: in theory, by providing the machine, the software stack, and the parameters, one’s work can be completely reproduced. Because reproducibility is so crucial to the scientific process, this capability can be seen as one of the primary assets of container technology.

ALCF users have already begun to take advantage of the service. Argonne computational scientist Taylor Childers (in collaboration with a team of researchers from Brookhaven National Laboratory, LBNL, and the Large Hadron Collider’s ATLAS experiment) led ASCR Leadership Computing Challenge and ALCF Data Science Program projects to improve the performance of ATLAS software and workflows on DOE supercomputers. Every year ATLAS generates petabytes of raw data, the interpretation of which requires even larger simulated datasets, making recourse to leadership-scale computing resources an attractive option. The ATLAS software itself—a complex collection of algorithms with many different authors—is terabytes in size and features manifold dependencies, making manual installation a cumbersome task.

The researchers were able to run the ATLAS software on Theta inside a Singularity container via Yoda, an MPI-enabled Python application the team developed to communicate between CERN and ALCF systems and ensure all nodes in the latter are supplied with work throughout execution. The use of Singularity resulted in linear scaling on up to 1,024 of Theta’s nodes, with event processing improved by a factor of four.

“All told, with this setup we were able to deliver to ATLAS 65 million proton collisions simulated on Theta using 50 million core-hours,” said Childers.

Containerization also effectively circumvented the software’s relative “unfriendliness” toward distributed shared file systems by accelerating metadata access calls; tests performed without the ATLAS software suggested that containerization could speed up such access calls by a factor of seven.

While Singularity can present a tradeoff between immediacy and computational performance (because the containerized software stacks, generally speaking, are not written to exploit massively parallel architectures), the data-intensive ATLAS project demonstrates the potential value in such a compromise for some scenarios, given the impracticality of retooling the code at its center.

Because containers afford users the ability to switch between software versions without risking incompatibility, the service has also been a mechanism to expand research and try out new computing environments. Rick Stevens—Argonne’s Associate Laboratory Director for Computing, Environment, and Life Sciences (CELS)—leads the Aurora Early Science Program project Virtual Drug Response Prediction. The machine learning-centric project, whose workflow is built from the CANDLE (CANcer Distributed Learning Environment) framework, enables billions of virtual drugs to be screened singly and in numerous combinations while predicting their effects on tumor cells. Their distribution made possible by Singularity containerization, CANDLE workflows are shared between a multitude of users whose interests span basic cancer research, deep learning, and exascale computing. Accordingly, different subsets of CANDLE users are concerned with experimental alterations to different components of the software stack.

“CANDLE users at health institutes, for instance, may have no need for exotic code alterations intended to harness the bleeding-edge capabilities of new systems, instead requiring production-ready workflows primed to address realistic problems,” explained Tom Brettin, Strategic Program Manager for CELS and a co-principal investigator on the project. Meanwhile, through the support of DOE’s Exascale Computing Project, CANDLE is being prepared for exascale deployment.

Containers are relatively new technology for HPC, and their role may well continue to grow. “I don’t expect this to be a passing fad,” said Riley. “It’s functionality that, within five years, will likely be utilized in ways we can’t even anticipate yet.”

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.


Source: Nils Heinonen, ALCF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated more efforts (academic, government, and commercial) but whose Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitment to holistic sustainability as well as launching a managed Read more…

By Oliver Peckham

New CMU AI Poker Bot – Pluribus – Humbles the Pros Again

July 15, 2019

Remember Libratus, the Carnegie Mellon University developed AI poker bot that’s been humbling poker professionals at Texas hold’em for a couple of years. Well, say hello to Pluribus, an upgraded bot, which has now be Read more…

By John Russell

HPE Extreme Performance Solutions

Bring the Combined Power of HPC and AI to Your Business Transformation

A growing number of commercial businesses are implementing HPC solutions to derive actionable business insights, to run higher performance applications and to gain a competitive advantage. Read more…

IBM Accelerated Insights

Smarter Technology Revs Up Red Bull Racing

In 21st century business, companies that effectively leverage their information resources – thrive. As it turns out, the same is true in Formula One racing. Read more…

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, some of the apps, like SWIFT and OpenFOAM, really pushed the st Read more…

By Dan Olds

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

By Oliver Peckham

New CMU AI Poker Bot – Pluribus – Humbles the Pros Again

July 15, 2019

Remember Libratus, the Carnegie Mellon University developed AI poker bot that’s been humbling poker professionals at Texas hold’em for a couple of years. We Read more…

By John Russell

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This