ALCF Research Benefits from Singularity

February 7, 2019

Feb. 7 — Scaling code for massively parallel architectures is a common challenge the scientific community faces. When moving from a system used for development—a personal laptop, for instance, or even a university’s computing cluster—to a large-scale supercomputer like those housed at the Argonne Leadership Computing Facility (ALCF), a U.S. Department of Energy (DOE) Office of Science User Facility, researchers traditionally would only migrate the target application: the underlying software stack would be left behind.

To help alleviate this problem, the ALCF has deployed the service Singularity. Singularity, an open-source framework originally developed by Lawrence Berkeley National Laboratory (LBNL) and now supported by Sylabs Inc., is a tool for creating and running containers (platforms designed to package code and its dependencies so as to facilitate fast and reliable switching between computing environments)—albeit one intended specifically for scientific workflows and high-performance computing (HPC) resources.

“There is a definite need for increased reproducibility and flexibility when a user is getting started here, and containers can be tremendously valuable in that regard. Supporting emerging technologies like Singularity is part of a broader strategy to provide users with services and tools that help advance science by eliminating barriers to productive use of our supercomputers,” said Katherine Riley, Director of Science at the ALCF.

The demand for such services has grown at the ALCF as a direct result of the HPC community’s diversification.

When the ALCF first opened, it was catering to a smaller user base representative of the handful of domains conventionally associated with scientific computing (high energy physics and astrophysics, for example). HPC is now a principal research tool in new fields such as genomics, which perhaps lack some of the computing culture ingrained in certain older disciplines. Moreover, researchers tackling problems in machine learning, for example, constitute a new community. This creates a strong incentive to make HPC more immediately approachable to users so as to reduce the amount of time spent preparing code and establishing migration protocols, and thus hasten the start of research.

This plot shows the number of events ATLAS events simulated (solid lines) with and without containerization. Linear scaling is shown (dotted lines) for reference. Credit: J. Taylor Childers, Argonne National Laboratory

Singularity, to this end, promotes strong mobility of compute and reproducibility due to the framework’s employment of a distributable image format. This image format incorporates the entire software stack and runtime environment of the application into a single monolithic file. Users thereby gain the ability to define, create, and maintain an application on different hosts and operating environments. Once a containerized workflow is defined, its image can be snapshotted, archived, and preserved for future use. The snapshot itself represents a boon for scientific provenance by detailing the exact conditions under which given data were generated: in theory, by providing the machine, the software stack, and the parameters, one’s work can be completely reproduced. Because reproducibility is so crucial to the scientific process, this capability can be seen as one of the primary assets of container technology.

ALCF users have already begun to take advantage of the service. Argonne computational scientist Taylor Childers (in collaboration with a team of researchers from Brookhaven National Laboratory, LBNL, and the Large Hadron Collider’s ATLAS experiment) led ASCR Leadership Computing Challenge and ALCF Data Science Program projects to improve the performance of ATLAS software and workflows on DOE supercomputers. Every year ATLAS generates petabytes of raw data, the interpretation of which requires even larger simulated datasets, making recourse to leadership-scale computing resources an attractive option. The ATLAS software itself—a complex collection of algorithms with many different authors—is terabytes in size and features manifold dependencies, making manual installation a cumbersome task.

The researchers were able to run the ATLAS software on Theta inside a Singularity container via Yoda, an MPI-enabled Python application the team developed to communicate between CERN and ALCF systems and ensure all nodes in the latter are supplied with work throughout execution. The use of Singularity resulted in linear scaling on up to 1,024 of Theta’s nodes, with event processing improved by a factor of four.

“All told, with this setup we were able to deliver to ATLAS 65 million proton collisions simulated on Theta using 50 million core-hours,” said Childers.

Containerization also effectively circumvented the software’s relative “unfriendliness” toward distributed shared file systems by accelerating metadata access calls; tests performed without the ATLAS software suggested that containerization could speed up such access calls by a factor of seven.

While Singularity can present a tradeoff between immediacy and computational performance (because the containerized software stacks, generally speaking, are not written to exploit massively parallel architectures), the data-intensive ATLAS project demonstrates the potential value in such a compromise for some scenarios, given the impracticality of retooling the code at its center.

Because containers afford users the ability to switch between software versions without risking incompatibility, the service has also been a mechanism to expand research and try out new computing environments. Rick Stevens—Argonne’s Associate Laboratory Director for Computing, Environment, and Life Sciences (CELS)—leads the Aurora Early Science Program project Virtual Drug Response Prediction. The machine learning-centric project, whose workflow is built from the CANDLE (CANcer Distributed Learning Environment) framework, enables billions of virtual drugs to be screened singly and in numerous combinations while predicting their effects on tumor cells. Their distribution made possible by Singularity containerization, CANDLE workflows are shared between a multitude of users whose interests span basic cancer research, deep learning, and exascale computing. Accordingly, different subsets of CANDLE users are concerned with experimental alterations to different components of the software stack.

“CANDLE users at health institutes, for instance, may have no need for exotic code alterations intended to harness the bleeding-edge capabilities of new systems, instead requiring production-ready workflows primed to address realistic problems,” explained Tom Brettin, Strategic Program Manager for CELS and a co-principal investigator on the project. Meanwhile, through the support of DOE’s Exascale Computing Project, CANDLE is being prepared for exascale deployment.

Containers are relatively new technology for HPC, and their role may well continue to grow. “I don’t expect this to be a passing fad,” said Riley. “It’s functionality that, within five years, will likely be utilized in ways we can’t even anticipate yet.”

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.


Source: Nils Heinonen, ALCF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Supercomputers Assist Hunt for Mysterious Axion Particle

January 21, 2021

In the 1970s, scientists theorized the existence of axions: particles born in the hearts of stars that, when exposed to a magnetic field, become light particles, and which may even comprise dark matter. To date, however, Read more…

By Oliver Peckham

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Researchers Train Fluid Dynamics Neural Networks on Supercomputers

January 21, 2021

Fluid dynamics simulations are critical for applications ranging from wind turbine design to aircraft optimization. Running these simulations through direct numerical simulations, however, is computationally costly. Many Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This