ALCF Research Benefits from Singularity

February 7, 2019

Feb. 7 — Scaling code for massively parallel architectures is a common challenge the scientific community faces. When moving from a system used for development—a personal laptop, for instance, or even a university’s computing cluster—to a large-scale supercomputer like those housed at the Argonne Leadership Computing Facility (ALCF), a U.S. Department of Energy (DOE) Office of Science User Facility, researchers traditionally would only migrate the target application: the underlying software stack would be left behind.

To help alleviate this problem, the ALCF has deployed the service Singularity. Singularity, an open-source framework originally developed by Lawrence Berkeley National Laboratory (LBNL) and now supported by Sylabs Inc., is a tool for creating and running containers (platforms designed to package code and its dependencies so as to facilitate fast and reliable switching between computing environments)—albeit one intended specifically for scientific workflows and high-performance computing (HPC) resources.

“There is a definite need for increased reproducibility and flexibility when a user is getting started here, and containers can be tremendously valuable in that regard. Supporting emerging technologies like Singularity is part of a broader strategy to provide users with services and tools that help advance science by eliminating barriers to productive use of our supercomputers,” said Katherine Riley, Director of Science at the ALCF.

The demand for such services has grown at the ALCF as a direct result of the HPC community’s diversification.

When the ALCF first opened, it was catering to a smaller user base representative of the handful of domains conventionally associated with scientific computing (high energy physics and astrophysics, for example). HPC is now a principal research tool in new fields such as genomics, which perhaps lack some of the computing culture ingrained in certain older disciplines. Moreover, researchers tackling problems in machine learning, for example, constitute a new community. This creates a strong incentive to make HPC more immediately approachable to users so as to reduce the amount of time spent preparing code and establishing migration protocols, and thus hasten the start of research.

This plot shows the number of events ATLAS events simulated (solid lines) with and without containerization. Linear scaling is shown (dotted lines) for reference. Credit: J. Taylor Childers, Argonne National Laboratory

Singularity, to this end, promotes strong mobility of compute and reproducibility due to the framework’s employment of a distributable image format. This image format incorporates the entire software stack and runtime environment of the application into a single monolithic file. Users thereby gain the ability to define, create, and maintain an application on different hosts and operating environments. Once a containerized workflow is defined, its image can be snapshotted, archived, and preserved for future use. The snapshot itself represents a boon for scientific provenance by detailing the exact conditions under which given data were generated: in theory, by providing the machine, the software stack, and the parameters, one’s work can be completely reproduced. Because reproducibility is so crucial to the scientific process, this capability can be seen as one of the primary assets of container technology.

ALCF users have already begun to take advantage of the service. Argonne computational scientist Taylor Childers (in collaboration with a team of researchers from Brookhaven National Laboratory, LBNL, and the Large Hadron Collider’s ATLAS experiment) led ASCR Leadership Computing Challenge and ALCF Data Science Program projects to improve the performance of ATLAS software and workflows on DOE supercomputers. Every year ATLAS generates petabytes of raw data, the interpretation of which requires even larger simulated datasets, making recourse to leadership-scale computing resources an attractive option. The ATLAS software itself—a complex collection of algorithms with many different authors—is terabytes in size and features manifold dependencies, making manual installation a cumbersome task.

The researchers were able to run the ATLAS software on Theta inside a Singularity container via Yoda, an MPI-enabled Python application the team developed to communicate between CERN and ALCF systems and ensure all nodes in the latter are supplied with work throughout execution. The use of Singularity resulted in linear scaling on up to 1,024 of Theta’s nodes, with event processing improved by a factor of four.

“All told, with this setup we were able to deliver to ATLAS 65 million proton collisions simulated on Theta using 50 million core-hours,” said Childers.

Containerization also effectively circumvented the software’s relative “unfriendliness” toward distributed shared file systems by accelerating metadata access calls; tests performed without the ATLAS software suggested that containerization could speed up such access calls by a factor of seven.

While Singularity can present a tradeoff between immediacy and computational performance (because the containerized software stacks, generally speaking, are not written to exploit massively parallel architectures), the data-intensive ATLAS project demonstrates the potential value in such a compromise for some scenarios, given the impracticality of retooling the code at its center.

Because containers afford users the ability to switch between software versions without risking incompatibility, the service has also been a mechanism to expand research and try out new computing environments. Rick Stevens—Argonne’s Associate Laboratory Director for Computing, Environment, and Life Sciences (CELS)—leads the Aurora Early Science Program project Virtual Drug Response Prediction. The machine learning-centric project, whose workflow is built from the CANDLE (CANcer Distributed Learning Environment) framework, enables billions of virtual drugs to be screened singly and in numerous combinations while predicting their effects on tumor cells. Their distribution made possible by Singularity containerization, CANDLE workflows are shared between a multitude of users whose interests span basic cancer research, deep learning, and exascale computing. Accordingly, different subsets of CANDLE users are concerned with experimental alterations to different components of the software stack.

“CANDLE users at health institutes, for instance, may have no need for exotic code alterations intended to harness the bleeding-edge capabilities of new systems, instead requiring production-ready workflows primed to address realistic problems,” explained Tom Brettin, Strategic Program Manager for CELS and a co-principal investigator on the project. Meanwhile, through the support of DOE’s Exascale Computing Project, CANDLE is being prepared for exascale deployment.

Containers are relatively new technology for HPC, and their role may well continue to grow. “I don’t expect this to be a passing fad,” said Riley. “It’s functionality that, within five years, will likely be utilized in ways we can’t even anticipate yet.”

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.


Source: Nils Heinonen, ALCF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable quantum memory framework. “This work provides a promising Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire