ALCF Selects Data and Learning Projects for Aurora Early Science Program

June 28, 2018

June 28, 2018 — The Argonne Leadership Computing Facility (ALCF), a U.S. Department of Energy (DOE) Office of Science User Facility, has selected 10 data science and machine learning projects for its Aurora Early Science Program (ESP). Set to be the nation’s first exascale system upon its expected 2021 arrival, Aurora will be capable of performing a quintillion calculations per second.

The Aurora Early Science Program is designed to help prepare key applications, libraries, and infrastructure for the architecture and scale of the ALCF’s future exascale supercomputer. Image courtesy of ALCF.

The Aurora ESP, which commenced with 10 simulation-based projects in 2017, is designed to prepare key applications, libraries, and infrastructure for the architecture and scale of the exascale supercomputer.

The 10 new data and learning projects were selected to support the ALCF’s new paradigm for scientific computing, which expands on traditional simulation-based research to include data science and machine learning approaches.

The ESP projects originate from universities and national laboratories across the country and span a wide range of disciplines that cover key scientific areas and numerical methods. The teams will receive hands-on assistance to port and optimize their applications for the new architecture using systems available today and early Aurora hardware when it is available.

“The Aurora ESP continues the ALCF tradition of delivering science on day one while helping to lay the path for hundreds of future users,” says Tim Williams, Deputy Director of Argonne’s Computational Science Division. “It’s an exciting opportunity for researchers, who get to be among the first people in the world to run code on an exascale system.”

Previous Early Science programs helped usher in earlier ALCF supercomputers, including the Intel-Cray system Theta and the IBM Blue Gene/Q system Mira, both of which continue to serve the scientific research community today.

The ALCF will host numerous training events to help the Aurora ESP project teams prepare their codes for the coming system, with assistance from Intel and Cray. Each Early Science team is also paired with a dedicated postdoctoral researcher from the ALCF.

Aurora ESP Data and Learning Projects

Exascale Computational Catalysis
David Bross, Argonne National Laboratory

Chemical transformation technologies are present in virtually every sector, and their continued advancement requires a molecular-level understanding of underlying chemical processes. This project will facilitate and accelerate the quantitative description of crucial gas-phase and coupled heterogeneous catalyst/gas-phase chemical systems through the development of data-driven tools designed to revolutionize predictive catalysis and address DOE grand challenges.

Machine Learning for Lattice Quantum Chromodynamics
William Detmold, Massachusetts Institute of Technology

This project will determine possible interactions between nuclei and a large class of dark matter candidate particles. By coupling advanced machine learning and state-of-the-art physics simulations, it will provide critical input for experimental searches aiming to unravel the mysteries of dark matter while simultaneously giving insight into fundamental particle physics.

Enabling Connectomics at Exascale to Facilitate Discoveries in Neuroscience
Nicola Ferrier, Argonne National Laboratory

This project will develop a computational pipeline for neuroscience that will extract brain-image-derived mappings of neurons and their connections from electron microscope datasets too large for today’s most powerful systems. Ultimately the pipeline will be used to analyze an entire cubic centimeter of electron microscopy data.

Dark Sky Mining
Salman Habib, Argonne National Laboratory

This project will connect some of the world’s largest and most detailed extreme-scale cosmological simulations with large-scale data obtained from the Large Synoptic Survey Telescope, the most comprehensive observations of the visible sky. By implementing cutting-edge data-intensive and machine learning techniques, it will usher in a new era of cosmological inference targeted at scientific breakthroughs.

Data Analytics and Machine Learning for Exascale Computational Fluid Dynamics
Ken Jansen, University of Colorado Boulder

This project will develop data analytics and machine learning techniques to greatly enhance the value of flow simulations with the extraction of meaningful dynamics information. A hierarchy of turbulence models will be applied to a series of increasingly complex flows before culminating in the first flight-scale design optimization of active flow control on an aircraft’s vertical tail.

Many-Body Perturbation Theory Meets Machine Learning to Discover Singlet Fission Materials
Noa Marom, Carnegie Mellon University

Supercomputers have been guiding materials discovery for the creation of more efficient organic solar cells. By combining quantum-mechanical simulations with machine learning and data science, this project will harness exascale power to revolutionize the process of photovoltaic design and advance physical understanding of singlet fission, the phenomenon whereby one photogenerated singlet exciton is converted into two triplet excitons—increasing the electricity produced.

Simulating and Learning in the ATLAS Detector at the Exascale
James Proudfoot, Argonne National Laboratory

The ATLAS experiment at the Large Hadron Collider measures particles produced in proton-proton collision as if it were an extraordinarily rapid camera. These measurements led to the discovery of the Higgs boson, but hundreds of petabytes of data still remain unexamined, and the experiment’s computational needs will grow by an order of magnitude or more over the next decade. This project deploys necessary workflows and updates algorithms for exascale machines, preparing Aurora for effective use in the search for new physics.

Extreme-Scale In-Situ Visualization and Analysis of Fluid-Structure-Interaction Simulations
Amanda Randles, Duke University and Oak Ridge National Laboratory

This project advances the use of data science to drive analysis of extreme-scale fluid-structure-interaction simulations so as to develop our understanding of the role biological parameters play in determining tumor cell trajectory in the circulatory system. A cellular-level model of systemic-scale flow represents a critical step towards elucidating the mechanisms driving cancer metastasis.

Virtual Drug Response Prediction
Rick Stevens, Argonne National Laboratory

Utilizing data frames too large for conventional systems and a deep learning workflow designed to provide new approaches to personalized cancer medicine, this project enables billions of virtual drugs to be screened singly and in numerous combinations, while predicting their effects on tumor cells. The workflow is built from the CANDLE (CANcer Distributed Learning Environment) framework to optimize model hyper-parameters and perform billions of inferences to quantify model uncertainty and ultimately deliver results to be tested in pre-clinical experiments.

Accelerated Deep Learning Discovery in Fusion Energy Science
William Tang, Princeton Plasma Physics Laboratory

Machine learning and artificial intelligence can demonstrably accelerate scientific progress in predictive modeling for grand challenge areas such as the quest for clean energy via fusion power. This project seeks to expand modern convolutional and recurrent neural net software to carry out optimized hyperparameter tuning on exascale supercomputers to make strides toward validated prediction and associated mitigation of large-scale disruptions in burning plasmas such as ITER.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.


Source: ALCF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

U.S. CTO Michael Kratsios Adds DoD Research & Engineering Title

July 13, 2020

Michael Kratsios, the U.S. Chief Technology Officer, has been appointed acting Undersecretary of Defense for research and engineering. He replaces Mike Griffin, who along with his deputy Lis Porter, stepped down last wee Read more…

By John Russell

Supercomputer Research Reveals Star Cluster Born Outside Our Galaxy

July 11, 2020

The Milky Way is our galactic home, containing our solar system and continuing into a giant band of densely packed stars that stretches across clear night skies around the world – but, it turns out, not all of those st Read more…

By Oliver Peckham

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprised of Intel Xeon processors and Nvidia A100 GPUs, and featuri Read more…

By Tiffany Trader

Xilinx Announces First Adaptive Computing Challenge

July 9, 2020

A new contest is challenging the computing world. Xilinx has announced the first Xilinx Adaptive Computing Challenge, a competition that will task developers and startups with finding creative workload acceleration solutions. Xilinx is running the Adaptive Computing Challenge in partnership with Hackster.io, a developing community... Read more…

By Staff report

Reviving Moore’s Law? LBNL Researchers See Promise in Heterostructure Oxides

July 9, 2020

The reality of Moore’s law’s decline is no longer doubted for good empirical reasons. That said, never say never. Recent work by Lawrence Berkeley National Laboratory researchers suggests heterostructure oxides may b Read more…

By John Russell

AWS Solution Channel

Best Practices for Running Computational Fluid Dynamics (CFD) Workloads on AWS

The scalable nature and variable demand of CFD workloads makes them well-suited for a cloud computing environment. Many of the AWS instance types, such as the compute family instance types, are designed to include support for this type of workload.  Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: 1) Industries of the Future (IotF), chaired be Dario Gil (d Read more…

By John Russell

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprise Read more…

By Tiffany Trader

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

In this exclusive interview for HPCwire – sadly not face to face – Steve Conway, senior advisor for Hyperion Research, talks with Dr.-Ing Bastian Koller about the state of HPC and its collaboration with Industry in Europe. Koller is a familiar figure in HPC. He is the managing director at High Performance Computing Center Stuttgart (HLRS) and also serves... Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This