ALCF Selects Data and Learning Projects for Aurora Early Science Program

June 28, 2018

June 28, 2018 — The Argonne Leadership Computing Facility (ALCF), a U.S. Department of Energy (DOE) Office of Science User Facility, has selected 10 data science and machine learning projects for its Aurora Early Science Program (ESP). Set to be the nation’s first exascale system upon its expected 2021 arrival, Aurora will be capable of performing a quintillion calculations per second.

The Aurora Early Science Program is designed to help prepare key applications, libraries, and infrastructure for the architecture and scale of the ALCF’s future exascale supercomputer. Image courtesy of ALCF.

The Aurora ESP, which commenced with 10 simulation-based projects in 2017, is designed to prepare key applications, libraries, and infrastructure for the architecture and scale of the exascale supercomputer.

The 10 new data and learning projects were selected to support the ALCF’s new paradigm for scientific computing, which expands on traditional simulation-based research to include data science and machine learning approaches.

The ESP projects originate from universities and national laboratories across the country and span a wide range of disciplines that cover key scientific areas and numerical methods. The teams will receive hands-on assistance to port and optimize their applications for the new architecture using systems available today and early Aurora hardware when it is available.

“The Aurora ESP continues the ALCF tradition of delivering science on day one while helping to lay the path for hundreds of future users,” says Tim Williams, Deputy Director of Argonne’s Computational Science Division. “It’s an exciting opportunity for researchers, who get to be among the first people in the world to run code on an exascale system.”

Previous Early Science programs helped usher in earlier ALCF supercomputers, including the Intel-Cray system Theta and the IBM Blue Gene/Q system Mira, both of which continue to serve the scientific research community today.

The ALCF will host numerous training events to help the Aurora ESP project teams prepare their codes for the coming system, with assistance from Intel and Cray. Each Early Science team is also paired with a dedicated postdoctoral researcher from the ALCF.

Aurora ESP Data and Learning Projects

Exascale Computational Catalysis
David Bross, Argonne National Laboratory

Chemical transformation technologies are present in virtually every sector, and their continued advancement requires a molecular-level understanding of underlying chemical processes. This project will facilitate and accelerate the quantitative description of crucial gas-phase and coupled heterogeneous catalyst/gas-phase chemical systems through the development of data-driven tools designed to revolutionize predictive catalysis and address DOE grand challenges.

Machine Learning for Lattice Quantum Chromodynamics
William Detmold, Massachusetts Institute of Technology

This project will determine possible interactions between nuclei and a large class of dark matter candidate particles. By coupling advanced machine learning and state-of-the-art physics simulations, it will provide critical input for experimental searches aiming to unravel the mysteries of dark matter while simultaneously giving insight into fundamental particle physics.

Enabling Connectomics at Exascale to Facilitate Discoveries in Neuroscience
Nicola Ferrier, Argonne National Laboratory

This project will develop a computational pipeline for neuroscience that will extract brain-image-derived mappings of neurons and their connections from electron microscope datasets too large for today’s most powerful systems. Ultimately the pipeline will be used to analyze an entire cubic centimeter of electron microscopy data.

Dark Sky Mining
Salman Habib, Argonne National Laboratory

This project will connect some of the world’s largest and most detailed extreme-scale cosmological simulations with large-scale data obtained from the Large Synoptic Survey Telescope, the most comprehensive observations of the visible sky. By implementing cutting-edge data-intensive and machine learning techniques, it will usher in a new era of cosmological inference targeted at scientific breakthroughs.

Data Analytics and Machine Learning for Exascale Computational Fluid Dynamics
Ken Jansen, University of Colorado Boulder

This project will develop data analytics and machine learning techniques to greatly enhance the value of flow simulations with the extraction of meaningful dynamics information. A hierarchy of turbulence models will be applied to a series of increasingly complex flows before culminating in the first flight-scale design optimization of active flow control on an aircraft’s vertical tail.

Many-Body Perturbation Theory Meets Machine Learning to Discover Singlet Fission Materials
Noa Marom, Carnegie Mellon University

Supercomputers have been guiding materials discovery for the creation of more efficient organic solar cells. By combining quantum-mechanical simulations with machine learning and data science, this project will harness exascale power to revolutionize the process of photovoltaic design and advance physical understanding of singlet fission, the phenomenon whereby one photogenerated singlet exciton is converted into two triplet excitons—increasing the electricity produced.

Simulating and Learning in the ATLAS Detector at the Exascale
James Proudfoot, Argonne National Laboratory

The ATLAS experiment at the Large Hadron Collider measures particles produced in proton-proton collision as if it were an extraordinarily rapid camera. These measurements led to the discovery of the Higgs boson, but hundreds of petabytes of data still remain unexamined, and the experiment’s computational needs will grow by an order of magnitude or more over the next decade. This project deploys necessary workflows and updates algorithms for exascale machines, preparing Aurora for effective use in the search for new physics.

Extreme-Scale In-Situ Visualization and Analysis of Fluid-Structure-Interaction Simulations
Amanda Randles, Duke University and Oak Ridge National Laboratory

This project advances the use of data science to drive analysis of extreme-scale fluid-structure-interaction simulations so as to develop our understanding of the role biological parameters play in determining tumor cell trajectory in the circulatory system. A cellular-level model of systemic-scale flow represents a critical step towards elucidating the mechanisms driving cancer metastasis.

Virtual Drug Response Prediction
Rick Stevens, Argonne National Laboratory

Utilizing data frames too large for conventional systems and a deep learning workflow designed to provide new approaches to personalized cancer medicine, this project enables billions of virtual drugs to be screened singly and in numerous combinations, while predicting their effects on tumor cells. The workflow is built from the CANDLE (CANcer Distributed Learning Environment) framework to optimize model hyper-parameters and perform billions of inferences to quantify model uncertainty and ultimately deliver results to be tested in pre-clinical experiments.

Accelerated Deep Learning Discovery in Fusion Energy Science
William Tang, Princeton Plasma Physics Laboratory

Machine learning and artificial intelligence can demonstrably accelerate scientific progress in predictive modeling for grand challenge areas such as the quest for clean energy via fusion power. This project seeks to expand modern convolutional and recurrent neural net software to carry out optimized hyperparameter tuning on exascale supercomputers to make strides toward validated prediction and associated mitigation of large-scale disruptions in burning plasmas such as ITER.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.


Source: ALCF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UT Dallas Grows HPC Storage Footprint for Animation and Game Development

October 28, 2020

Computer-generated animation and video game development are extraordinarily computationally intensive fields, with studios often requiring large server farms with hundreds of terabytes – or even petabytes – of storag Read more…

By Staff report

Frame by Frame, Supercomputing Reveals the Forms of the Coronavirus

October 27, 2020

From the start of the pandemic, supercomputing research has been targeting one particular protein of the coronavirus: the notorious “S” or “spike” protein, which allows the virus to pry its way into human cells a Read more…

By Oliver Peckham

AMD Reports Record Revenue and $35B Deal to Buy Xilinx

October 27, 2020

AMD this morning reported record quarterly revenue of $2.8 billion and a finalized deal to buy FPGA-maker Xilinx for $35 billion in an all-stock transaction. The acquisition helps AMD keep pace during a time of consolida Read more…

By John Russell

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chip maker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the Europe Read more…

By George Leopold

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a reference collection of open-source HPC software components and bes Read more…

By John Russell

AWS Solution Channel

Rapid Chip Design in the Cloud

Time-to-market and engineering efficiency are the most critical and expensive metrics for a chip design company. With this in mind, the team at Annapurna Labs selected Altair AcceleratorRead more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

AMD Reports Record Revenue and $35B Deal to Buy Xilinx

October 27, 2020

AMD this morning reported record quarterly revenue of $2.8 billion and a finalized deal to buy FPGA-maker Xilinx for $35 billion in an all-stock transaction. Th Read more…

By John Russell

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a referen Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This