ALCF Selects Data and Learning Projects for Aurora Early Science Program

June 28, 2018

June 28, 2018 — The Argonne Leadership Computing Facility (ALCF), a U.S. Department of Energy (DOE) Office of Science User Facility, has selected 10 data science and machine learning projects for its Aurora Early Science Program (ESP). Set to be the nation’s first exascale system upon its expected 2021 arrival, Aurora will be capable of performing a quintillion calculations per second.

The Aurora Early Science Program is designed to help prepare key applications, libraries, and infrastructure for the architecture and scale of the ALCF’s future exascale supercomputer. Image courtesy of ALCF.

The Aurora ESP, which commenced with 10 simulation-based projects in 2017, is designed to prepare key applications, libraries, and infrastructure for the architecture and scale of the exascale supercomputer.

The 10 new data and learning projects were selected to support the ALCF’s new paradigm for scientific computing, which expands on traditional simulation-based research to include data science and machine learning approaches.

The ESP projects originate from universities and national laboratories across the country and span a wide range of disciplines that cover key scientific areas and numerical methods. The teams will receive hands-on assistance to port and optimize their applications for the new architecture using systems available today and early Aurora hardware when it is available.

“The Aurora ESP continues the ALCF tradition of delivering science on day one while helping to lay the path for hundreds of future users,” says Tim Williams, Deputy Director of Argonne’s Computational Science Division. “It’s an exciting opportunity for researchers, who get to be among the first people in the world to run code on an exascale system.”

Previous Early Science programs helped usher in earlier ALCF supercomputers, including the Intel-Cray system Theta and the IBM Blue Gene/Q system Mira, both of which continue to serve the scientific research community today.

The ALCF will host numerous training events to help the Aurora ESP project teams prepare their codes for the coming system, with assistance from Intel and Cray. Each Early Science team is also paired with a dedicated postdoctoral researcher from the ALCF.

Aurora ESP Data and Learning Projects

Exascale Computational Catalysis
David Bross, Argonne National Laboratory

Chemical transformation technologies are present in virtually every sector, and their continued advancement requires a molecular-level understanding of underlying chemical processes. This project will facilitate and accelerate the quantitative description of crucial gas-phase and coupled heterogeneous catalyst/gas-phase chemical systems through the development of data-driven tools designed to revolutionize predictive catalysis and address DOE grand challenges.

Machine Learning for Lattice Quantum Chromodynamics
William Detmold, Massachusetts Institute of Technology

This project will determine possible interactions between nuclei and a large class of dark matter candidate particles. By coupling advanced machine learning and state-of-the-art physics simulations, it will provide critical input for experimental searches aiming to unravel the mysteries of dark matter while simultaneously giving insight into fundamental particle physics.

Enabling Connectomics at Exascale to Facilitate Discoveries in Neuroscience
Nicola Ferrier, Argonne National Laboratory

This project will develop a computational pipeline for neuroscience that will extract brain-image-derived mappings of neurons and their connections from electron microscope datasets too large for today’s most powerful systems. Ultimately the pipeline will be used to analyze an entire cubic centimeter of electron microscopy data.

Dark Sky Mining
Salman Habib, Argonne National Laboratory

This project will connect some of the world’s largest and most detailed extreme-scale cosmological simulations with large-scale data obtained from the Large Synoptic Survey Telescope, the most comprehensive observations of the visible sky. By implementing cutting-edge data-intensive and machine learning techniques, it will usher in a new era of cosmological inference targeted at scientific breakthroughs.

Data Analytics and Machine Learning for Exascale Computational Fluid Dynamics
Ken Jansen, University of Colorado Boulder

This project will develop data analytics and machine learning techniques to greatly enhance the value of flow simulations with the extraction of meaningful dynamics information. A hierarchy of turbulence models will be applied to a series of increasingly complex flows before culminating in the first flight-scale design optimization of active flow control on an aircraft’s vertical tail.

Many-Body Perturbation Theory Meets Machine Learning to Discover Singlet Fission Materials
Noa Marom, Carnegie Mellon University

Supercomputers have been guiding materials discovery for the creation of more efficient organic solar cells. By combining quantum-mechanical simulations with machine learning and data science, this project will harness exascale power to revolutionize the process of photovoltaic design and advance physical understanding of singlet fission, the phenomenon whereby one photogenerated singlet exciton is converted into two triplet excitons—increasing the electricity produced.

Simulating and Learning in the ATLAS Detector at the Exascale
James Proudfoot, Argonne National Laboratory

The ATLAS experiment at the Large Hadron Collider measures particles produced in proton-proton collision as if it were an extraordinarily rapid camera. These measurements led to the discovery of the Higgs boson, but hundreds of petabytes of data still remain unexamined, and the experiment’s computational needs will grow by an order of magnitude or more over the next decade. This project deploys necessary workflows and updates algorithms for exascale machines, preparing Aurora for effective use in the search for new physics.

Extreme-Scale In-Situ Visualization and Analysis of Fluid-Structure-Interaction Simulations
Amanda Randles, Duke University and Oak Ridge National Laboratory

This project advances the use of data science to drive analysis of extreme-scale fluid-structure-interaction simulations so as to develop our understanding of the role biological parameters play in determining tumor cell trajectory in the circulatory system. A cellular-level model of systemic-scale flow represents a critical step towards elucidating the mechanisms driving cancer metastasis.

Virtual Drug Response Prediction
Rick Stevens, Argonne National Laboratory

Utilizing data frames too large for conventional systems and a deep learning workflow designed to provide new approaches to personalized cancer medicine, this project enables billions of virtual drugs to be screened singly and in numerous combinations, while predicting their effects on tumor cells. The workflow is built from the CANDLE (CANcer Distributed Learning Environment) framework to optimize model hyper-parameters and perform billions of inferences to quantify model uncertainty and ultimately deliver results to be tested in pre-clinical experiments.

Accelerated Deep Learning Discovery in Fusion Energy Science
William Tang, Princeton Plasma Physics Laboratory

Machine learning and artificial intelligence can demonstrably accelerate scientific progress in predictive modeling for grand challenge areas such as the quest for clean energy via fusion power. This project seeks to expand modern convolutional and recurrent neural net software to carry out optimized hyperparameter tuning on exascale supercomputers to make strides toward validated prediction and associated mitigation of large-scale disruptions in burning plasmas such as ITER.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.


Source: ALCF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This