ALCF Selects Data and Learning Projects for Aurora Early Science Program

June 28, 2018

June 28, 2018 — The Argonne Leadership Computing Facility (ALCF), a U.S. Department of Energy (DOE) Office of Science User Facility, has selected 10 data science and machine learning projects for its Aurora Early Science Program (ESP). Set to be the nation’s first exascale system upon its expected 2021 arrival, Aurora will be capable of performing a quintillion calculations per second.

The Aurora Early Science Program is designed to help prepare key applications, libraries, and infrastructure for the architecture and scale of the ALCF’s future exascale supercomputer. Image courtesy of ALCF.

The Aurora ESP, which commenced with 10 simulation-based projects in 2017, is designed to prepare key applications, libraries, and infrastructure for the architecture and scale of the exascale supercomputer.

The 10 new data and learning projects were selected to support the ALCF’s new paradigm for scientific computing, which expands on traditional simulation-based research to include data science and machine learning approaches.

The ESP projects originate from universities and national laboratories across the country and span a wide range of disciplines that cover key scientific areas and numerical methods. The teams will receive hands-on assistance to port and optimize their applications for the new architecture using systems available today and early Aurora hardware when it is available.

“The Aurora ESP continues the ALCF tradition of delivering science on day one while helping to lay the path for hundreds of future users,” says Tim Williams, Deputy Director of Argonne’s Computational Science Division. “It’s an exciting opportunity for researchers, who get to be among the first people in the world to run code on an exascale system.”

Previous Early Science programs helped usher in earlier ALCF supercomputers, including the Intel-Cray system Theta and the IBM Blue Gene/Q system Mira, both of which continue to serve the scientific research community today.

The ALCF will host numerous training events to help the Aurora ESP project teams prepare their codes for the coming system, with assistance from Intel and Cray. Each Early Science team is also paired with a dedicated postdoctoral researcher from the ALCF.

Aurora ESP Data and Learning Projects

Exascale Computational Catalysis
David Bross, Argonne National Laboratory

Chemical transformation technologies are present in virtually every sector, and their continued advancement requires a molecular-level understanding of underlying chemical processes. This project will facilitate and accelerate the quantitative description of crucial gas-phase and coupled heterogeneous catalyst/gas-phase chemical systems through the development of data-driven tools designed to revolutionize predictive catalysis and address DOE grand challenges.

Machine Learning for Lattice Quantum Chromodynamics
William Detmold, Massachusetts Institute of Technology

This project will determine possible interactions between nuclei and a large class of dark matter candidate particles. By coupling advanced machine learning and state-of-the-art physics simulations, it will provide critical input for experimental searches aiming to unravel the mysteries of dark matter while simultaneously giving insight into fundamental particle physics.

Enabling Connectomics at Exascale to Facilitate Discoveries in Neuroscience
Nicola Ferrier, Argonne National Laboratory

This project will develop a computational pipeline for neuroscience that will extract brain-image-derived mappings of neurons and their connections from electron microscope datasets too large for today’s most powerful systems. Ultimately the pipeline will be used to analyze an entire cubic centimeter of electron microscopy data.

Dark Sky Mining
Salman Habib, Argonne National Laboratory

This project will connect some of the world’s largest and most detailed extreme-scale cosmological simulations with large-scale data obtained from the Large Synoptic Survey Telescope, the most comprehensive observations of the visible sky. By implementing cutting-edge data-intensive and machine learning techniques, it will usher in a new era of cosmological inference targeted at scientific breakthroughs.

Data Analytics and Machine Learning for Exascale Computational Fluid Dynamics
Ken Jansen, University of Colorado Boulder

This project will develop data analytics and machine learning techniques to greatly enhance the value of flow simulations with the extraction of meaningful dynamics information. A hierarchy of turbulence models will be applied to a series of increasingly complex flows before culminating in the first flight-scale design optimization of active flow control on an aircraft’s vertical tail.

Many-Body Perturbation Theory Meets Machine Learning to Discover Singlet Fission Materials
Noa Marom, Carnegie Mellon University

Supercomputers have been guiding materials discovery for the creation of more efficient organic solar cells. By combining quantum-mechanical simulations with machine learning and data science, this project will harness exascale power to revolutionize the process of photovoltaic design and advance physical understanding of singlet fission, the phenomenon whereby one photogenerated singlet exciton is converted into two triplet excitons—increasing the electricity produced.

Simulating and Learning in the ATLAS Detector at the Exascale
James Proudfoot, Argonne National Laboratory

The ATLAS experiment at the Large Hadron Collider measures particles produced in proton-proton collision as if it were an extraordinarily rapid camera. These measurements led to the discovery of the Higgs boson, but hundreds of petabytes of data still remain unexamined, and the experiment’s computational needs will grow by an order of magnitude or more over the next decade. This project deploys necessary workflows and updates algorithms for exascale machines, preparing Aurora for effective use in the search for new physics.

Extreme-Scale In-Situ Visualization and Analysis of Fluid-Structure-Interaction Simulations
Amanda Randles, Duke University and Oak Ridge National Laboratory

This project advances the use of data science to drive analysis of extreme-scale fluid-structure-interaction simulations so as to develop our understanding of the role biological parameters play in determining tumor cell trajectory in the circulatory system. A cellular-level model of systemic-scale flow represents a critical step towards elucidating the mechanisms driving cancer metastasis.

Virtual Drug Response Prediction
Rick Stevens, Argonne National Laboratory

Utilizing data frames too large for conventional systems and a deep learning workflow designed to provide new approaches to personalized cancer medicine, this project enables billions of virtual drugs to be screened singly and in numerous combinations, while predicting their effects on tumor cells. The workflow is built from the CANDLE (CANcer Distributed Learning Environment) framework to optimize model hyper-parameters and perform billions of inferences to quantify model uncertainty and ultimately deliver results to be tested in pre-clinical experiments.

Accelerated Deep Learning Discovery in Fusion Energy Science
William Tang, Princeton Plasma Physics Laboratory

Machine learning and artificial intelligence can demonstrably accelerate scientific progress in predictive modeling for grand challenge areas such as the quest for clean energy via fusion power. This project seeks to expand modern convolutional and recurrent neural net software to carry out optimized hyperparameter tuning on exascale supercomputers to make strides toward validated prediction and associated mitigation of large-scale disruptions in burning plasmas such as ITER.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.


Source: ALCF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire