ALCF Selects New Projects for Data Science Program

November 6, 2019

Nov. 6, 2019 — The Argonne Leadership Computing Facility (ALCF), a U.S. Department of Energy (DOE) Office of Science User Facility, has selected three new projects and renewed three ongoing projects for the 2019-2020 ALCF Data Science Program (ADSP).

The ADSP launched in 2016 in order to target “big data” science problems that require the power and advanced capabilities of leadership-class computing resources. The forward-looking allocation program is designed to explore and improve computational methods for enabling data-driven discoveries across scientific disciplines. It also focuses on scaling the underlying data science technology so as to fully utilize DOE supercomputers.

The new projects—which aim to accelerate materials science, tomography, and high energy physics—extract science from a range of unique data sources. Each employs leadership-class systems and infrastructure to further develop and advance data science techniques, with novel approaches to machine learning, deep learning, and other cutting-edge artificial intelligence (AI) methods. The projects selected for renewal address challenges in materials science, fast high-resolution x-ray imaging at Argonne’s Advanced Photon Source (a DOE Office of Science User Facility), and multi-messenger astrophysics.

“The ADSP awards this year advance our goals toward accelerating learning-based projects on ALCF systems, while also emphasizing the merger of deep learning with simulation codes,” said Thomas Uram, ALCF computer scientist and co-lead of the ADSP. “These projects will continue to push the ALCF’s Theta supercomputer in exciting new directions, combining high-throughput workflows, data-intensive science, and scalable machine learning.”

ADSP awards last for two years and are renewed on an annual basis.

New ADSP projects:

Advanced Materials Characterization with AI-Informed Computation
Marco Govoni, Argonne National Laboratory

Numerical simulations of the physical processes that occur in materials when they are excited with light are essential for the understanding and rational design of broad classes of materials for energy, quantum computation, and sensing applications. However, computationally intensive workflows are currently limiting the applicability of first-principles methods to complex systems, effectively hindering real-time identification and interpretation of experimentally observed physical processes. This project seeks to address this challenge by developing an AI-informed computational framework that integrates machine learning into existing workflows, thereby enabling the prediction of spectroscopic signatures of materials with fast turnaround.

Dynamic Compressed Sensing for Real-Time Tomographic Reconstruction
Robert Hovden, University of Michigan

3D characterization of materials at the nano- and mesoscale has become possible with electron and x-ray tomography. To overcome experimental limitations and improve image quality, compressed sensing (CS) algorithms leverage the notion of sparsity to provide superior resolution. However, while CS algorithms provide high resolution, they are computationally expensive and sensitive to additional tuning parameters. To overcome these challenges, this project aims to enable real-time CS tomography by developing a dynamic tomography framework that performs in-situ reconstruction as new data are collected.

Developing High-Performance-Computing Applications for Liquid Argon Neutrino Detectors
Andrzej Szelc, The University of Manchester

Liquid argon time projection chambers (LArTPCs), including the Short Baseline Near Detector (SBND) under construction at Fermilab, are a quickly growing detector technology. They are set to answer the biggest questions in neutrino physics by measuring the interactions of these ghost-like particles with unprecedented precision. This precision results from the high resolution of LArTPCs and the large number of neutrino interactions these detectors register. However, it will also create a formidable computing challenge to simulate, reconstruct, and process the data the SBND detector will acquire. To address this challenge, this project aims to use leadership computing resources to simulate and reconstruct neutrino interactions and the cosmic ray backgrounds that contaminate the detector readout. The team will develop tools to enable fast reprocessing and quick turnaround times, which are needed to optimize the performance of the reconstruction and the precision of detector simulations. Instead of a simulation processing campaign lasting for months, it could be completed in days on the ALCF’s Theta supercomputer. This will permit many more iterations of data processing that will lead to more precise scientific analyses and broaden the range of physics topics covered.

Renewed ADSP projects:

Deep Learning at Scale for Multi-Messenger Astrophysics through the NCSA-Argonne Collaboration
Eliu Huerta, University of Illinois at Urbana-Champaign

Multi-messenger astrophysics refers to the contemporaneous observation of astrophysical phenomena using gravitational waves, electromagnetic radiation, neutrinos, and cosmic rays. Full realization of the goals of multi-messenger astrophysics requires the resolution of outstanding computational challenges, which this project seeks to address through the development of algorithms that significantly increase the depth and speed of gravitational wave searches and that process terabyte-size datasets of telescope images in real-time. A crucial impact will be the real-time, at-scale discovery of multi-messenger sources, providing a more complete picture of some of the universe’s most mysterious and powerful events.

X-ray Microscopy of Extended 3D Objects: Scaling Towards the Future
Chris Jacobsen, Argonne National Laboratory and Northwestern University

With improvements in resolution, x-ray microscopy is approaching a specimen thickness limit beyond which one violates the pure projection approximation (PPA) needed for standard imaging. Sufficient understanding of the underlying problem has enabled development of a novel approach to beyond-pure-projection x-ray image reconstruction utilizing powerful—but computationally demanding—methods. This project aims to scale up these methods to meet the challenge of high-resolution 3D x-ray imaging beyond the PPA, benefitting not just cell and brain imaging but the full range of future nanoscale imaging activities at the APS and other DOE light sources.

Machine Learning Magnetic Properties of van der Waals Heterostructures
Trevor Rhone, Harvard University

The discovery of two-dimensional ferromagnetic materials in 2017 ushered in a new era of studies of magnetic order. Using a data-driven approach, this project combines machine learning and high-throughput density functional theory calculations to study van der Waals materials and predict their magnetic and thermodynamic properties. This non-traditional approach facilitates the rapid identification of new functional materials that will have broad impacts for science and industry.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

About  the U.S. Department of Energy’s Office of Science

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit

Source: Nils Heinonen, Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Introduces Next-Gen Intelligence Processing Unit for AI Workloads

July 15, 2020

British hardware designer Graphcore, which emerged from stealth in 2016 to launch its first-generation Intelligence Processing Unit (IPU), has announced its next-generation IPU platform: the IPU-Machine M2000. With the n Read more…

By Oliver Peckham

heFFTe: Scaling FFT for Exascale

July 15, 2020

Exascale computing aspires to provide breakthrough solutions addressing today’s most critical challenges in scientific discovery, energy assurance, economic competitiveness, and national security. This has been the mai Read more…

By Jack Dongarra and Stanimire Tomov

There’s No Storage Like ATGC: Breakthrough Helps to Store ‘The Wizard of Oz’ in DNA

July 15, 2020

Even as storage density reaches new heights, many researchers have their eyes set on a paradigm shift in high-density information storage: storing data in the four nucleotides (A, T, G and C) that constitute DNA, a metho Read more…

By Oliver Peckham

Get a Grip: Intel Neuromorphic Chip Used to Give Robotics Arm a Sense of Touch

July 15, 2020

Moving neuromorphic technology from the laboratory into practice has proven slow-going. This week, National University of Singapore researchers moved the needle forward demonstrating an event-driven, visual-tactile perce Read more…

By John Russell

What’s New in HPC Research: Volcanoes, Mobile Games, Proteins & More

July 14, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

AWS Solution Channel

INEOS TEAM UK Accelerates Boat Design for America’s Cup Using HPC on AWS

The America’s Cup Dream

The 36th America’s Cup race will be decided in Auckland, New Zealand in 2021. Like all the teams, INEOS TEAM UK will compete in a boat whose design will have followed guidelines set by race organizers to ensure the crew’s sailing skills are fully tested. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and increase the vehicle’s speed and efficiency. These fluid dyn Read more…

By Oliver Peckham

Graphcore Introduces Next-Gen Intelligence Processing Unit for AI Workloads

July 15, 2020

British hardware designer Graphcore, which emerged from stealth in 2016 to launch its first-generation Intelligence Processing Unit (IPU), has announced its nex Read more…

By Oliver Peckham

heFFTe: Scaling FFT for Exascale

July 15, 2020

Exascale computing aspires to provide breakthrough solutions addressing today’s most critical challenges in scientific discovery, energy assurance, economic c Read more…

By Jack Dongarra and Stanimire Tomov

Get a Grip: Intel Neuromorphic Chip Used to Give Robotics Arm a Sense of Touch

July 15, 2020

Moving neuromorphic technology from the laboratory into practice has proven slow-going. This week, National University of Singapore researchers moved the needle Read more…

By John Russell

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprise Read more…

By Tiffany Trader

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

In this exclusive interview for HPCwire – sadly not face to face – Steve Conway, senior advisor for Hyperion Research, talks with Dr.-Ing Bastian Koller about the state of HPC and its collaboration with Industry in Europe. Koller is a familiar figure in HPC. He is the managing director at High Performance Computing Center Stuttgart (HLRS) and also serves... Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Leading Solution Providers


Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This