ALCF Selects New Projects for Data Science Program

November 6, 2019

Nov. 6, 2019 — The Argonne Leadership Computing Facility (ALCF), a U.S. Department of Energy (DOE) Office of Science User Facility, has selected three new projects and renewed three ongoing projects for the 2019-2020 ALCF Data Science Program (ADSP).

The ADSP launched in 2016 in order to target “big data” science problems that require the power and advanced capabilities of leadership-class computing resources. The forward-looking allocation program is designed to explore and improve computational methods for enabling data-driven discoveries across scientific disciplines. It also focuses on scaling the underlying data science technology so as to fully utilize DOE supercomputers.

The new projects—which aim to accelerate materials science, tomography, and high energy physics—extract science from a range of unique data sources. Each employs leadership-class systems and infrastructure to further develop and advance data science techniques, with novel approaches to machine learning, deep learning, and other cutting-edge artificial intelligence (AI) methods. The projects selected for renewal address challenges in materials science, fast high-resolution x-ray imaging at Argonne’s Advanced Photon Source (a DOE Office of Science User Facility), and multi-messenger astrophysics.

“The ADSP awards this year advance our goals toward accelerating learning-based projects on ALCF systems, while also emphasizing the merger of deep learning with simulation codes,” said Thomas Uram, ALCF computer scientist and co-lead of the ADSP. “These projects will continue to push the ALCF’s Theta supercomputer in exciting new directions, combining high-throughput workflows, data-intensive science, and scalable machine learning.”

ADSP awards last for two years and are renewed on an annual basis.

New ADSP projects:

Advanced Materials Characterization with AI-Informed Computation
Marco Govoni, Argonne National Laboratory

Numerical simulations of the physical processes that occur in materials when they are excited with light are essential for the understanding and rational design of broad classes of materials for energy, quantum computation, and sensing applications. However, computationally intensive workflows are currently limiting the applicability of first-principles methods to complex systems, effectively hindering real-time identification and interpretation of experimentally observed physical processes. This project seeks to address this challenge by developing an AI-informed computational framework that integrates machine learning into existing workflows, thereby enabling the prediction of spectroscopic signatures of materials with fast turnaround.

Dynamic Compressed Sensing for Real-Time Tomographic Reconstruction
Robert Hovden, University of Michigan

3D characterization of materials at the nano- and mesoscale has become possible with electron and x-ray tomography. To overcome experimental limitations and improve image quality, compressed sensing (CS) algorithms leverage the notion of sparsity to provide superior resolution. However, while CS algorithms provide high resolution, they are computationally expensive and sensitive to additional tuning parameters. To overcome these challenges, this project aims to enable real-time CS tomography by developing a dynamic tomography framework that performs in-situ reconstruction as new data are collected.

Developing High-Performance-Computing Applications for Liquid Argon Neutrino Detectors
Andrzej Szelc, The University of Manchester

Liquid argon time projection chambers (LArTPCs), including the Short Baseline Near Detector (SBND) under construction at Fermilab, are a quickly growing detector technology. They are set to answer the biggest questions in neutrino physics by measuring the interactions of these ghost-like particles with unprecedented precision. This precision results from the high resolution of LArTPCs and the large number of neutrino interactions these detectors register. However, it will also create a formidable computing challenge to simulate, reconstruct, and process the data the SBND detector will acquire. To address this challenge, this project aims to use leadership computing resources to simulate and reconstruct neutrino interactions and the cosmic ray backgrounds that contaminate the detector readout. The team will develop tools to enable fast reprocessing and quick turnaround times, which are needed to optimize the performance of the reconstruction and the precision of detector simulations. Instead of a simulation processing campaign lasting for months, it could be completed in days on the ALCF’s Theta supercomputer. This will permit many more iterations of data processing that will lead to more precise scientific analyses and broaden the range of physics topics covered.

Renewed ADSP projects:

Deep Learning at Scale for Multi-Messenger Astrophysics through the NCSA-Argonne Collaboration
Eliu Huerta, University of Illinois at Urbana-Champaign

Multi-messenger astrophysics refers to the contemporaneous observation of astrophysical phenomena using gravitational waves, electromagnetic radiation, neutrinos, and cosmic rays. Full realization of the goals of multi-messenger astrophysics requires the resolution of outstanding computational challenges, which this project seeks to address through the development of algorithms that significantly increase the depth and speed of gravitational wave searches and that process terabyte-size datasets of telescope images in real-time. A crucial impact will be the real-time, at-scale discovery of multi-messenger sources, providing a more complete picture of some of the universe’s most mysterious and powerful events.

X-ray Microscopy of Extended 3D Objects: Scaling Towards the Future
Chris Jacobsen, Argonne National Laboratory and Northwestern University

With improvements in resolution, x-ray microscopy is approaching a specimen thickness limit beyond which one violates the pure projection approximation (PPA) needed for standard imaging. Sufficient understanding of the underlying problem has enabled development of a novel approach to beyond-pure-projection x-ray image reconstruction utilizing powerful—but computationally demanding—methods. This project aims to scale up these methods to meet the challenge of high-resolution 3D x-ray imaging beyond the PPA, benefitting not just cell and brain imaging but the full range of future nanoscale imaging activities at the APS and other DOE light sources.

Machine Learning Magnetic Properties of van der Waals Heterostructures
Trevor Rhone, Harvard University

The discovery of two-dimensional ferromagnetic materials in 2017 ushered in a new era of studies of magnetic order. Using a data-driven approach, this project combines machine learning and high-throughput density functional theory calculations to study van der Waals materials and predict their magnetic and thermodynamic properties. This non-traditional approach facilitates the rapid identification of new functional materials that will have broad impacts for science and industry.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

About  the U.S. Department of Energy’s Office of Science

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science


Source: Nils Heinonen, Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Officials, scientists and other stakeholders celebrated the new sy Read more…

By Staff report

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Indiana University Researchers Use Supercomputing to Model the State’s Largest Watershed

February 20, 2020

With water stressors on the rise, understanding and protecting water supplies is more important than ever. Now, a team of researchers from Indiana University has created a new climate change data portal to help Indianans Read more…

By Staff report

TACC – Supporting Portable, Reproducible, Computational Science with Containers

February 20, 2020

Researchers who use supercomputers for science typically don't limit themselves to one system. They move their projects to whatever resources are available, often using many different systems simultaneously, in their lab Read more…

By Aaron Dubrow

China Researchers Set Distance Record in Quantum Memory Entanglement

February 20, 2020

Efforts to develop the necessary capabilities for building a practical ‘quantum-based’ internet have been ongoing for years. One of the biggest challenges is being able to maintain and manage entanglement of remote q Read more…

By John Russell

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

New Algorithm Allows PCs to Challenge HPC in Weather Forecasting

February 19, 2020

Accurate weather forecasting has, by and large, been situated squarely in the domain of high-performance computing – just this week, the UK announced a nearly $1.6 billion investment in the world’s largest supercompu Read more…

By Oliver Peckham

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Japan’s AIST Benchmarks Intel Optane; Cites Benefit for HPC and AI

February 19, 2020

Last April Intel released its Optane Data Center Persistent Memory Module (DCPMM) – byte addressable nonvolatile memory – to increase main memory capacity a Read more…

By John Russell

UK Announces £1.2 Billion Weather and Climate Supercomputer

February 19, 2020

While the planet is heating up, so is the race for global leadership in weather and climate computing. In a bombshell announcement, the UK government revealed p Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or Read more…

By Oliver Peckham

Eni to Retake Industry HPC Crown with Launch of HPC5

February 12, 2020

With the launch of its Dell-built HPC5 system, Italian energy company Eni regains its position atop the industrial supercomputing leaderboard. At 52-petaflops p Read more…

By Tiffany Trader

Trump Budget Proposal Again Slashes Science Spending

February 11, 2020

President Donald Trump’s FY2021 U.S. Budget, submitted to Congress this week, again slashes science spending. It’s a $4.8 trillion statement of priorities, Read more…

By John Russell

Policy: Republicans Eye Bigger Science Budgets; NSF Celebrates 70th, Names Idea Machine Winners

February 5, 2020

It’s a busy week for science policy. Yesterday, the National Science Foundation announced winners of its 2026 Idea Machine contest seeking directions for futu Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This