ALCF Simulations Aim to Reduce Jet Engine Noise

September 21, 2017

CHICAGO, Ill., Sept. 21, 2017 — Humans make a lot of noise. The riffs of heavy metal bands like Metallica and Kiss have soared to levels in the 130-decibel range, levels sure to lead to auditory damage.

But try as they might, bands just can’t compete with the decibel ranges produced by jet engines. They are, said Joe Nichols, among the loudest sources of human-made noise that exist.

An assistant professor of Aerospace Engineering and Mechanics at the University of Minnesota, Nichols is fascinated by sound and its ability to find order in chaos – and by applying that understanding to the development of new technologies that can reduce noise in aircraft.

“His project leverages computational data with what he calls input-output analysis, which reveals the origins of jet noise that are otherwise hidden in direct run-of-the-mill forward simulations, or even experiments.” – Ramesh Balakrishnan, Argonne computational scientist

Nichols is working with the Argonne Leadership Computing Facility (ALCF), a U.S. Department of Energy (DOE) Office of Science User Facility within the DOE’s Argonne National Laboratory, to create high-fidelity computer simulations to determine how jet turbulence produces noise. The results may lead to novel engineering designs that reduce noise over commercial flight paths and on aircraft carrier decks.

“Noise tells you something about the fundamental nature of turbulence, because noise reveals order that is otherwise hidden in complex, highly nonlinear, chaotic phenomena,” he said.

That is why jet noise presents both a challenging and a beautiful problem for Nichols.

Taming the roar of the engine

Jet engines produce noise in different ways, but mainly it comes from the high-speed exhaust stream that leaves the nozzle at the rear of the engine. And planes are loudest when they move slowly, such as at takeoff or at landing. As the exhaust stream meets relatively still air, it creates tremendous shear that quickly becomes unstable. The turbulence produced from this instability becomes the roar of the engine.

Aeronautic engineers incorporate chevrons, broken eggshell-shaped patterns, into exhaust nozzle designs to change the shape of the jet as it leaves the engine. The idea is to reduce the noise by changing the pattern of the turbulence. But much of the design work remains a guessing game.

Working with ALCF computational scientist Ramesh Balakrishnan and Argonne’s supercomputer Mira, Nichols and his team are applying computational fluid dynamics to remove some of that guesswork. They start by conducting high-fidelity large eddy simulations that accurately capture the physics of the turbulence that is making the noise.

From those simulations they extract reduced-order, or more concise, models that explain what part of the turbulence actually makes the sound. In addition to improving scientific understanding of jet noise, these reduced-order models also provide a fast, yet accurate, means for engineers to evaluate new designs.

Simulating complex geometries like jet turbulence requires the use of an unstructured mesh — a non-uniform 3-D grid — to represent the dynamics involved. In this case, one simulation could have 500 million grid points. Multiply that by five to account for pressure, density and three components of velocity to describe the flow at every grid point. That equates to billions of degrees of freedom, or the number of variables Mira uses to simulate jet noise.

“But what if inside the jet turbulence there is a skeleton of coherent flow structures that we can describe with just 50 degrees of freedom,” suggested Nichols. “Which aspects are most important to the jet noise production? How do the flow structures interact with each other? How closely can the skeleton model represent the high-fidelity simulation?”

This work, published last year in the journal Physics of Fluids, could help engineers more precisely direct the modeling of jet engine nozzle geometries by determining, for instance, the ideal number and length of chevrons.

“What distinguishes Joe’s work from those of the other computational fluid dynamics projects at ALCF is that it involves the development of a method that could mature into becoming a design tool for aero-acoustics,” said ALCF’s Balakrishnan. “His project leverages computational data with what he calls input-output analysis, which reveals the origins of jet noise that are otherwise hidden in direct run-of-the-mill forward simulations, or even experiments.”

Simulating waves of aviation

One of the leading ways to predict the instability waves that create sound inside of turbulence is through methods based on a type of computational tool called parabolized stability equations. But while they’re good at predicting supersonic sound sources, they have a hard time predicting all the components of subsonic jet noise, especially in the sideline direction, or perpendicular to the exhaust stream.

The University of Minnesota team developed a new method based on input-output analysis that can predict both the downstream noise and the sideline noise. While it was thought that the sideline noise was random, the input-output modes show coherent structure in the jet that is connected to the sideline noise, such that it can be predicted and controlled.

Nichols also uses a variation on the input-output analysis to study noise produced by impingement, where a jet blast is directed at a flat surface, such as aircraft taking off from or hovering over an aircraft carrier deck.

Like decibel-breaking guitar licks, impingement produces a feedback loop when the turbulence hits a flat surface and accelerates outward. As the noise loops back towards the jet nozzle, new turbulence is triggered, creating extremely large tones that can reach into the 170-decibel range and do structural damage to the aircraft in question.

Nichols and his team are applying computational fluid dynamics to reduce the noise by changing the pattern of the turbulence. With Nichols are Anubhav Dwivedi (left) and Jinah Jeun (right), graduate students in Aerospace Engineering and Mechanics at the University of Minnesota. (Image courtesy of University of Minnesota.)

The team turned to Mira to conduct a high-fidelity simulation of an impinging jet without any modifications, and then measured the noise it produced. When compared to ongoing experiments, they predicted those same tones very accurately. A reduced-order model of the simulations helped Nichols more precisely predict how to change the jet configuration to eliminate feedback tones. Another simulation of the modified jet showed that the tones were almost completely gone.

“The simulations play a crucial role because they let us see spatio-temporally resolved fluid motions that would be impossible to measure experimentally, especially if you’re talking about a hot exhaust moving at Mach 1.5,” noted Nichols.

This research, says Balakrishnan, is still a work in progress, but the results are encouraging. While it still needs some refinement, it holds the promise of becoming a design tool that jet engine manufacturers may one day use to help quiet the skies.

For electric guitar makers Fender and Gibson, on the other hand, perhaps not so much.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.


Source: John Spizzirri, ANL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How Formula 1 Used Cloud HPC to Build the Next Generation of Racing

December 12, 2019

Formula 1, Rob Smedley explained, is maybe the biggest racing spectacle in the world, with five hundred million fans tuning in for every race. Smedley, a chief engineer with Formula 1’s performance engineering and anal Read more…

By Oliver Peckham

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has been unveiled in upstate New York that will be used by IBM Read more…

By Doug Black

At SC19: Developing a Digital Twin

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location. In such a world, there will also be a digita Read more…

By Aaron Dubrow

Supercomputers Help Predict Carbon Dioxide Levels

December 10, 2019

The Earth’s terrestrial ecosystems – its lands, forests, jungles and so on – are crucial “sinks” for atmospheric carbon, holding nearly 30 percent of our annual CO2 emissions as they breathe in the carbon-rich Read more…

By Oliver Peckham

Finally! SC19 Competitors Live and in Color!

December 10, 2019

You know the saying “better late than never”? That’s how my cluster competition coverage is faring this year. With SC19 coming late in November, quickly followed by my annual trip to South Africa to cover their clu Read more…

By Dan Olds

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

GPU Scheduling and Resource Accounting: The Key to an Efficient AI Data Center

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community!]

GPUs are the new CPUs

GPUs have become a staple technology in modern HPC and AI data centers. Read more…

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum processor chips. The new controller is a mixed-signal SoC named Ho Read more…

By John Russell

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has Read more…

By Doug Black

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum proces Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science its Read more…

By John Russell

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

Tsinghua University Racks Up Its Ninth Student Cluster Championship Win at SC19

November 27, 2019

Tsinghua University has done it again. At SC19 last week, the eight-time gold medal-winner team took home the top prize in the 2019 Student Cluster Competition Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
CEJN
CJEN
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This