ALCF Simulations Aim to Reduce Jet Engine Noise

September 21, 2017

CHICAGO, Ill., Sept. 21, 2017 — Humans make a lot of noise. The riffs of heavy metal bands like Metallica and Kiss have soared to levels in the 130-decibel range, levels sure to lead to auditory damage.

But try as they might, bands just can’t compete with the decibel ranges produced by jet engines. They are, said Joe Nichols, among the loudest sources of human-made noise that exist.

An assistant professor of Aerospace Engineering and Mechanics at the University of Minnesota, Nichols is fascinated by sound and its ability to find order in chaos – and by applying that understanding to the development of new technologies that can reduce noise in aircraft.

“His project leverages computational data with what he calls input-output analysis, which reveals the origins of jet noise that are otherwise hidden in direct run-of-the-mill forward simulations, or even experiments.” – Ramesh Balakrishnan, Argonne computational scientist

Nichols is working with the Argonne Leadership Computing Facility (ALCF), a U.S. Department of Energy (DOE) Office of Science User Facility within the DOE’s Argonne National Laboratory, to create high-fidelity computer simulations to determine how jet turbulence produces noise. The results may lead to novel engineering designs that reduce noise over commercial flight paths and on aircraft carrier decks.

“Noise tells you something about the fundamental nature of turbulence, because noise reveals order that is otherwise hidden in complex, highly nonlinear, chaotic phenomena,” he said.

That is why jet noise presents both a challenging and a beautiful problem for Nichols.

Taming the roar of the engine

Jet engines produce noise in different ways, but mainly it comes from the high-speed exhaust stream that leaves the nozzle at the rear of the engine. And planes are loudest when they move slowly, such as at takeoff or at landing. As the exhaust stream meets relatively still air, it creates tremendous shear that quickly becomes unstable. The turbulence produced from this instability becomes the roar of the engine.

Aeronautic engineers incorporate chevrons, broken eggshell-shaped patterns, into exhaust nozzle designs to change the shape of the jet as it leaves the engine. The idea is to reduce the noise by changing the pattern of the turbulence. But much of the design work remains a guessing game.

Working with ALCF computational scientist Ramesh Balakrishnan and Argonne’s supercomputer Mira, Nichols and his team are applying computational fluid dynamics to remove some of that guesswork. They start by conducting high-fidelity large eddy simulations that accurately capture the physics of the turbulence that is making the noise.

From those simulations they extract reduced-order, or more concise, models that explain what part of the turbulence actually makes the sound. In addition to improving scientific understanding of jet noise, these reduced-order models also provide a fast, yet accurate, means for engineers to evaluate new designs.

Simulating complex geometries like jet turbulence requires the use of an unstructured mesh — a non-uniform 3-D grid — to represent the dynamics involved. In this case, one simulation could have 500 million grid points. Multiply that by five to account for pressure, density and three components of velocity to describe the flow at every grid point. That equates to billions of degrees of freedom, or the number of variables Mira uses to simulate jet noise.

“But what if inside the jet turbulence there is a skeleton of coherent flow structures that we can describe with just 50 degrees of freedom,” suggested Nichols. “Which aspects are most important to the jet noise production? How do the flow structures interact with each other? How closely can the skeleton model represent the high-fidelity simulation?”

This work, published last year in the journal Physics of Fluids, could help engineers more precisely direct the modeling of jet engine nozzle geometries by determining, for instance, the ideal number and length of chevrons.

“What distinguishes Joe’s work from those of the other computational fluid dynamics projects at ALCF is that it involves the development of a method that could mature into becoming a design tool for aero-acoustics,” said ALCF’s Balakrishnan. “His project leverages computational data with what he calls input-output analysis, which reveals the origins of jet noise that are otherwise hidden in direct run-of-the-mill forward simulations, or even experiments.”

Simulating waves of aviation

One of the leading ways to predict the instability waves that create sound inside of turbulence is through methods based on a type of computational tool called parabolized stability equations. But while they’re good at predicting supersonic sound sources, they have a hard time predicting all the components of subsonic jet noise, especially in the sideline direction, or perpendicular to the exhaust stream.

The University of Minnesota team developed a new method based on input-output analysis that can predict both the downstream noise and the sideline noise. While it was thought that the sideline noise was random, the input-output modes show coherent structure in the jet that is connected to the sideline noise, such that it can be predicted and controlled.

Nichols also uses a variation on the input-output analysis to study noise produced by impingement, where a jet blast is directed at a flat surface, such as aircraft taking off from or hovering over an aircraft carrier deck.

Like decibel-breaking guitar licks, impingement produces a feedback loop when the turbulence hits a flat surface and accelerates outward. As the noise loops back towards the jet nozzle, new turbulence is triggered, creating extremely large tones that can reach into the 170-decibel range and do structural damage to the aircraft in question.

Nichols and his team are applying computational fluid dynamics to reduce the noise by changing the pattern of the turbulence. With Nichols are Anubhav Dwivedi (left) and Jinah Jeun (right), graduate students in Aerospace Engineering and Mechanics at the University of Minnesota. (Image courtesy of University of Minnesota.)

The team turned to Mira to conduct a high-fidelity simulation of an impinging jet without any modifications, and then measured the noise it produced. When compared to ongoing experiments, they predicted those same tones very accurately. A reduced-order model of the simulations helped Nichols more precisely predict how to change the jet configuration to eliminate feedback tones. Another simulation of the modified jet showed that the tones were almost completely gone.

“The simulations play a crucial role because they let us see spatio-temporally resolved fluid motions that would be impossible to measure experimentally, especially if you’re talking about a hot exhaust moving at Mach 1.5,” noted Nichols.

This research, says Balakrishnan, is still a work in progress, but the results are encouraging. While it still needs some refinement, it holds the promise of becoming a design tool that jet engine manufacturers may one day use to help quiet the skies.

For electric guitar makers Fender and Gibson, on the other hand, perhaps not so much.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.


Source: John Spizzirri, ANL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire