ALCF Summer Students Gain Hands-on Experience with HPC

October 4, 2022

Oct. 4, 2022 — As part of the ALCF’s summer student program, over 30 undergraduate and graduate students worked alongside staff mentors to gain real-world experience with supercomputing, data science, and AI projects.

ALCF summer students (left to right) Sirak Negash, Alina Kanayinkal, Ryien Hosseini, Alan Wang, and Saumya Singh.

Every summer, the Argonne Leadership Computing Facility (ALCF), a U.S. Department of Energy, Office of Science user facility located at DOE’s Argonne National Laboratory, hosts a new group of students to take on real-world scientific computing projects, providing valuable opportunities to work with research teams and learn new skills.

“It’s important to provide educational and career opportunities for students to take their next steps, gain confidence, and have new experiences working on impactful research projects outside of the classroom,” says Michael Papka, ALCF director and professor of computer science at the University of Illinois Chicago. “Our summer student program gives them the chance to see possibilities of what their careers could look like.”

This year’s class of ALCF summer students, which included more than 30 students ranging from undergraduates to doctoral candidates, tackled projects aimed at using artificial intelligence (AI) to analyze bird songs, visualizing large scientific datasets, advancing high energy physics research, and more. In the summaries below, five of the students spoke about what they worked on this summer and where they think the experience will take them next.

AI Analysis of Bird Audio

Saumya Singh, a graduate student studying AI at Northwestern University, is interested in researching self-supervised learning and reinforcement learning in AI and natural language processing. This summer she worked with mentors Michael Papka and Argonne computer scientist Nicola Ferrier on a project that used AI to analyze bird song audio collected from microphones in forests to provide insights into their ecosystems.

Singh was drawn to this project because of its significance to the environment and what it can reveal about forest ecosystems. “Birds or animals are a great predictor of the environment that they’re living in,” she says.

Using a new algorithm launched by Facebook AI Research for the analysis, her project employed self-supervised learning, which means the algorithm did not require labels to be provided by researchers.

“The main thing that I feel is going to help me is self-supervised learning because the main problem that we have for any of the data science projects is the pre-processing data labeling, so it will be great if we can solve the problem,” Singh says. “I can apply it to several other projects.”

Having previously worked with images and text, this project provided the opportunity to work with sound, large datasets, and new algorithms. “All these new techniques that I worked on,” Singh says, “seemed to be really fruitful for me to continue ahead in this data science-machine learning career path.”

Command-Line Interface, Python concurrency, and AI models

Alan Wang, a computer science student at the University of Illinois, was interested in working at the ALCF because of the powerful supercomputers and software tools it makes available for research. Though mostly interested in system security, Wang’s research at the ALCF has spanned facility operations, the Python programming language, and AI.

This summer he worked on three projects with ALCF mentors Paul Rich, George Rojas, and Bill Allcock: a command-line interface project aimed at making it easier for system administrators to carry out searches on the home directory for all of ALCF; a Python concurrency project comparing the speeds and performances of different currency libraries; and a project running AI models that use the open-source machine learning frameworks PyTorch and TensorFlow on the ALCF AI Testbed’s Cerebras and SambaNova systems.

Wang says that one of the most significant things he got out of this summer was learning more about using Python. He began the internship with around five years of Python experience, saying “I thought I had everything down but not even close. So, I learned a lot of Python and got exposed to using it in a lot of different environments.” Wang also was introduced to new software tools, such as the Emacs text editor, and worked with AI for the first time.

“I was surprised how interconnected AI was with systems, so knowing both sides and having an AI background will also be extremely helpful for me in the future,” Wang says.

Benchmarking Graph Neural Networks for Science on AI accelerators  

Ryien Hosseini’s work with the ALCF team was at the intersection of neural network algorithms and high performance computing. “My projects used computing resources in order to see how far we can push these algorithms known as graph neural networks for various scientific applications,” he says.

Hosseini, a graduate student in electrical and computer engineering at the University of Michigan, was interested in working at the ALCF due to the research-oriented nature of the internship, and to have access to the facility’s powerful computational resources. This summer, with ALCF mentors Filippo Simini and Venkat Vishwanath, he co-authored a workshop paper that assessed the performance of graph neural networks on NVIDIA GPUs (graphics processing units) and worked on another project that looked at the performance of graph neural networks on specialized hardware platforms.

In addition, Hosseini contributed to an effort that uses chemical docking for drug discovery. The project builds on previous work because, instead of just using neural networks to select molecules, they now use “the neural network as a pre-filter in order to choose a top percentage of candidates, and then those will go into a classical non-machine learning based algorithm, which is better at arriving at those final numerical estimates,” says Hosseini.

“I feel like I learned a lot both from thinking about high-level research ideas, high-level algorithms, and then really getting into the nitty gritty and doing the programming in order to implement those algorithms,” says Hosseini, who will be applying to PhD programs in the fall. “Having this structured, rigorous research background has really been helpful.”

High-Quality Visualizations for Large Scientific Datasets

Alina Kanayinkal is interested in computer graphics, particularly the computational side of animation. In her summer at the ALCF, she worked with Message Passing Interface, or MPI (a communication protocol for programming parallel computers), and image rendering, continuing the work she began as a student assistant to Tommy Marrinan, an Argonne scientist teaching at the University of St. Thomas.

For her summer project, Kanayinkal’s work focused on creating a workflow for rendering high-quality visualizations of large-scale datasets. Her research aims to leverage cinematic rendering tools (similar to those used by Pixar and Dreamworks) to create visualizations of scientific datasets that are too large or too time consuming to render on a single computer. While the workflow is generic enough for many types of scientific data, Kanayinkal worked with data from a coupled fluid flow and particle simulation to investigate cancer cell transport as well as a molecular dynamics simulation to investigate material friction. The ultimate goal of her studies is to develop an easier and less time-consuming way to create these visualizations.

Kanayinkal says one of her major takeaways from this summer at ALCF was realizing that research is “not a huge, scary thing. It is a big thing, but it’s not so big that it’s overwhelming.” She also has become more comfortable with learning on the fly, for instance learning MPI and the OpenEXR format for imaging applications.

Moving forward she is continuing to work with Marrinan and choosing projects that she enjoys working on, saying “if it’s something that you like, and you get frustrated, you’re just going to take a five-minute break and then come back and continue working on it rather than just being like ‘Forget it. I’m going to do something else.’”

Hyperparameter Optimization and Scaling Studies for ML Models in Physics Research

As a student at the University of Notre Dame, Sirak Negash worked with machine learning (ML) to help analyze data from particle physics experiments. This inspired him to continue pursuing machine learning studies, especially for high energy physics. He initially applied for a position as a summer research aide to gain more experience in physics research. “I was pleasantly surprised when I was contacted for a role at ALCF that involved working with a ML model in physics,” he says.

Collaborating with ALCF mentor Sam Foreman, Negash worked on determining the impact of different hyperparameter configurations on model performance and training cost for simulations of lattice quantum chromodynamics (or the strong interactions between quarks and gluons).

“I was able to complete a detailed set of studies on how scaling the lattice volume impacted the training cost when run on the ALCF’s Theta supercomputer,” Negash says.

The effort has been helpful to the ALCF because future research on quantum chromodynamics “can greatly benefit from an understanding of how the performance of these simulations is scaling with larger and larger lattice size,” he says.

After spending his summer at the ALCF, Negash says he “developed a new appreciation for science beyond the classroom and even beyond a physical lab, and the lessons and skills I have learned through this opportunity in ML research have kindled in me the desire to pursue a career in data analytics.”


Source: Emily Stevens, ALCF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire