ALCF Summer Students Gain Real-World Experience in Scientific HPC

October 24, 2017

Oct. 24, 2017 — Every summer, the Argonne Leadership Computing Facility (ALCF), a U.S. Department of Energy (DOE) Office of Science User Facility, opens its doors to a new class of student researchers who work alongside staff mentors to tackle research projects that address issues at the forefront of scientific computing.

From exploring big data analysis tools to developing new high-performance computing (HPC) capabilities, many of this year’s interns had the opportunity to gain hands-on experience with some of the most powerful supercomputers in the world at DOE’s Argonne National Laboratory.

“We want our interns to have a rewarding experience, but also to leave with a better understanding of what a National Laboratory is, and what it does for the country,” said ALCF Director Michael Papka. “If we can help them to connect their classroom training to practical, real-world R&D challenges, then we have succeeded.”

This year, the ALCF hosted 39 students ranging from college freshmen to Ph.D. candidates. The students presented their project results to the ALCF community at a series of special symposiums before heading back to their respective universities. Here’s a brief overview of four of the student projects.

Power monitoring for HPC applications

Ivana Marincic, a Ph.D. student in computer science at the University of Chicago, used the ALCF’s Cray XC40 supercomputer Theta to develop a new library that monitors and controls power consumption in large-scale applications.

While tools already exist for basic power profiling, none of them are equipped for profiling applications running on multiple nodes—and ALCF computing resources can have upwards of hundreds of thousands of nodes. Traditional libraries also typically require a certain degree of expertise in the use of such tools, as well as knowledge of a particular system’s power consumption characteristics.

“The HPC community is becoming increasingly aware that the power consumption of their applications matters,” Marincic said. “My tool is designed to enable HPC users of all backgrounds to profile their applications with a few simple lines of code while also providing more options to advanced users.”

Marincic’s library, called PoLiMEr, for Power Limiting and Monitoring of Energy, exploits the power monitoring and capping capabilities on Cray/Intel systems and provides users with detailed insights into their application’s power consumption.

The library also enables users to control the power consumption of their application at runtime via power limiting. Using PoLiMEr, Marincic was able to apply a stringent power cap to memory-intensive applications, thereby saving overall power consumption without any performance losses. She will present a paper on her findings at the Energy Efficient Supercomputing (E2SC) Workshop at SC17, the International Conference for High-Performance Computing, Networking, Storage and Analysis.

For Marincic, collaboration with her ALCF mentor, computer scientist Venkat Vishwanath and members of ALCF’s Operations and Science teams, proved critical to a successful research project.

“Without this environment that fosters collaboration, inquisitiveness and helping others, I wouldn’t have been able to achieve what I did in these three months,” Marincic said.

Automated email text analysis

ALCF’s technical support team handles thousands of emails every year from users seeking assistance with computing resources, user accounts, and other issues related to their ALCF projects.

To help staff gain insights from this vast amount of email, Patrick Cunningham, a junior studying computer science at Purdue University, spent his summer developing a system that can rapidly analyze email text for keywords and phrases.

Cunningham began his project by researching relevant journal articles and investigating various machine learning and natural language processing tools and techniques. He then used Python, the Natural Language Toolkit, and the Stanford Named Entity Recognizer to build a system that is capable of email processing, tagging, keyword identification, and scoring.

“This system lays the foundation for more advanced text analysis tools and projects,” he said. “For example, it could be possible to use the system to link relevant emails together to help identify solutions to support ticket questions more quickly.”

During the course of his three-month project, Cunningham used the system to process more than 130,000 emails from the support ticket database to extract all possible words, phrases, and concepts. The data generated by his system will feed into software that allows staff to find support emails that are the most relevant to their search phrases.

“The idea behind this project was to come up with a tool that can respond to commands like ‘give me a list of all emails that mention FFTW library in the past 90 days,’” said Doug Waldron, ALCF senior data architect and Cunningham’s summer mentor. “Later this year, we plan to have software in place so that we can take advantage of the system Patrick developed.”

Developing a scalable framework using FPGAs

With the potential to provide higher performance than today’s HPC processors (CPUs and GPUs) using less power, field-programmable gate arrays (FPGAs) are a promising technology for future supercomputers. But FPGAs have yet to gain much traction in HPC because they are notoriously difficult to program.

“FPGAs represent a paradigm shift in mainstream high-performance computing that addresses three of the most important challenges on the roadmap to exascale computing: resource utilization, power consumption and communication,” said Ahmed Sanaullah, a Ph.D. student at Boston University. “The icing on the cake is that FPGAs are commercial off-the-shelf devices. Anyone can create their own clusters using FPGAs, and they scale much better than GPUs.”

Sanaullah partnered with a summer intern working in Argonne’s Mathematics and Computer Science (MCS) Division, Chen Yang, also a student at Boston University, to develop a robust and scalable FPGA framework for accelerating HPC applications.

Over the course of the summer, Sanaullah and Yang created an FPGA chip, called TRIP (TeraOps/s Reconfigurable Inference Processor). The team evaluated TRIP’s performance using the massive datasets generated from the deep neural network code CANDLE (CANcer Distributed Learning Environment), now being developed at Argonne as part of DOE’s Exascale Computing Project, a collaborative effort of the DOE Office of Science and the National Nuclear Security Administration.

“This experience gave me a lot of insight into HPC workloads and deep neural networks,” Sanaullah said. “Moving forward, I hope to incorporate this into my future projects, including my dissertation, so that my work can contribute to HPC architectures and applications in a significant and meaningful way.”

Sanaullah and Yang will present the results of this work this November at SC17. Their project was a collaborative effort between Argonne and Boston University’s Computer Architecture and Automated Design Lab. Sanaullah was mentored by ALCF computational scientist Yuri Alexeev. Chang was mentored by Kazutomu Yoshii, an MCS software development specialist.

Exploring big data visualization tools

Three undergraduates from Northern Illinois University—Myrline Sylveus, May-Myo Khine, and Marium Yousuf—teamed up to explore the possibilities of using Apache Spark, an open-source big data processing framework, for in situ (i.e., real-time) data analysis and visualization.

“With our project, we wanted to demonstrate the value of in situanalysis,” Sylveus said. “This approach allows researchers to gain insights more quickly by analyzing and visualizing data during large simulation runs.”

The team focused on defining a workflow for in situ processing of images using a combination of PySpark, the Spark Python API (application programming interface), and Jupyter Notebooks, an open-source web application for creating and sharing documents that contain live code, equations, and visualizations. They ran the Apache Spark framework on Sage, a Cray Urika-GX system housed in Argonne’s Joint Laboratory for System Evaluation.

“Hopefully, our findings will help researchers who plan to use Apache Spark in the future by providing guidance on which resources, modules, and techniques work effectively,” Khine said.

The students’ work also provided some insights that will benefit ALCF’s visualization team as they continue to explore Apache Spark as a potential in situ analysis tool for the ALCF user community.

“This summer project helped us to understand the streaming library component of Apache Spark that connects to live simulation codes,” said ALCF computer scientist Silvio Rizzi, who mentored the students along with Joseph Insley, the ALCF’s visualization team lead.

After spending their summer at the ALCF, the three students were inspired by their opportunity to work at one of the nation’s leading institutions for scientific and engineering research.

“I am more encouraged and motivated to continue reaching toward my goal of becoming part of the research field,” Yousuf said.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.


Source: Jim Collins, Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This