ALCF Summer Students Gain Real-World Experience in Scientific HPC

October 24, 2017

Oct. 24, 2017 — Every summer, the Argonne Leadership Computing Facility (ALCF), a U.S. Department of Energy (DOE) Office of Science User Facility, opens its doors to a new class of student researchers who work alongside staff mentors to tackle research projects that address issues at the forefront of scientific computing.

From exploring big data analysis tools to developing new high-performance computing (HPC) capabilities, many of this year’s interns had the opportunity to gain hands-on experience with some of the most powerful supercomputers in the world at DOE’s Argonne National Laboratory.

“We want our interns to have a rewarding experience, but also to leave with a better understanding of what a National Laboratory is, and what it does for the country,” said ALCF Director Michael Papka. “If we can help them to connect their classroom training to practical, real-world R&D challenges, then we have succeeded.”

This year, the ALCF hosted 39 students ranging from college freshmen to Ph.D. candidates. The students presented their project results to the ALCF community at a series of special symposiums before heading back to their respective universities. Here’s a brief overview of four of the student projects.

Power monitoring for HPC applications

Ivana Marincic, a Ph.D. student in computer science at the University of Chicago, used the ALCF’s Cray XC40 supercomputer Theta to develop a new library that monitors and controls power consumption in large-scale applications.

While tools already exist for basic power profiling, none of them are equipped for profiling applications running on multiple nodes—and ALCF computing resources can have upwards of hundreds of thousands of nodes. Traditional libraries also typically require a certain degree of expertise in the use of such tools, as well as knowledge of a particular system’s power consumption characteristics.

“The HPC community is becoming increasingly aware that the power consumption of their applications matters,” Marincic said. “My tool is designed to enable HPC users of all backgrounds to profile their applications with a few simple lines of code while also providing more options to advanced users.”

Marincic’s library, called PoLiMEr, for Power Limiting and Monitoring of Energy, exploits the power monitoring and capping capabilities on Cray/Intel systems and provides users with detailed insights into their application’s power consumption.

The library also enables users to control the power consumption of their application at runtime via power limiting. Using PoLiMEr, Marincic was able to apply a stringent power cap to memory-intensive applications, thereby saving overall power consumption without any performance losses. She will present a paper on her findings at the Energy Efficient Supercomputing (E2SC) Workshop at SC17, the International Conference for High-Performance Computing, Networking, Storage and Analysis.

For Marincic, collaboration with her ALCF mentor, computer scientist Venkat Vishwanath and members of ALCF’s Operations and Science teams, proved critical to a successful research project.

“Without this environment that fosters collaboration, inquisitiveness and helping others, I wouldn’t have been able to achieve what I did in these three months,” Marincic said.

Automated email text analysis

ALCF’s technical support team handles thousands of emails every year from users seeking assistance with computing resources, user accounts, and other issues related to their ALCF projects.

To help staff gain insights from this vast amount of email, Patrick Cunningham, a junior studying computer science at Purdue University, spent his summer developing a system that can rapidly analyze email text for keywords and phrases.

Cunningham began his project by researching relevant journal articles and investigating various machine learning and natural language processing tools and techniques. He then used Python, the Natural Language Toolkit, and the Stanford Named Entity Recognizer to build a system that is capable of email processing, tagging, keyword identification, and scoring.

“This system lays the foundation for more advanced text analysis tools and projects,” he said. “For example, it could be possible to use the system to link relevant emails together to help identify solutions to support ticket questions more quickly.”

During the course of his three-month project, Cunningham used the system to process more than 130,000 emails from the support ticket database to extract all possible words, phrases, and concepts. The data generated by his system will feed into software that allows staff to find support emails that are the most relevant to their search phrases.

“The idea behind this project was to come up with a tool that can respond to commands like ‘give me a list of all emails that mention FFTW library in the past 90 days,’” said Doug Waldron, ALCF senior data architect and Cunningham’s summer mentor. “Later this year, we plan to have software in place so that we can take advantage of the system Patrick developed.”

Developing a scalable framework using FPGAs

With the potential to provide higher performance than today’s HPC processors (CPUs and GPUs) using less power, field-programmable gate arrays (FPGAs) are a promising technology for future supercomputers. But FPGAs have yet to gain much traction in HPC because they are notoriously difficult to program.

“FPGAs represent a paradigm shift in mainstream high-performance computing that addresses three of the most important challenges on the roadmap to exascale computing: resource utilization, power consumption and communication,” said Ahmed Sanaullah, a Ph.D. student at Boston University. “The icing on the cake is that FPGAs are commercial off-the-shelf devices. Anyone can create their own clusters using FPGAs, and they scale much better than GPUs.”

Sanaullah partnered with a summer intern working in Argonne’s Mathematics and Computer Science (MCS) Division, Chen Yang, also a student at Boston University, to develop a robust and scalable FPGA framework for accelerating HPC applications.

Over the course of the summer, Sanaullah and Yang created an FPGA chip, called TRIP (TeraOps/s Reconfigurable Inference Processor). The team evaluated TRIP’s performance using the massive datasets generated from the deep neural network code CANDLE (CANcer Distributed Learning Environment), now being developed at Argonne as part of DOE’s Exascale Computing Project, a collaborative effort of the DOE Office of Science and the National Nuclear Security Administration.

“This experience gave me a lot of insight into HPC workloads and deep neural networks,” Sanaullah said. “Moving forward, I hope to incorporate this into my future projects, including my dissertation, so that my work can contribute to HPC architectures and applications in a significant and meaningful way.”

Sanaullah and Yang will present the results of this work this November at SC17. Their project was a collaborative effort between Argonne and Boston University’s Computer Architecture and Automated Design Lab. Sanaullah was mentored by ALCF computational scientist Yuri Alexeev. Chang was mentored by Kazutomu Yoshii, an MCS software development specialist.

Exploring big data visualization tools

Three undergraduates from Northern Illinois University—Myrline Sylveus, May-Myo Khine, and Marium Yousuf—teamed up to explore the possibilities of using Apache Spark, an open-source big data processing framework, for in situ (i.e., real-time) data analysis and visualization.

“With our project, we wanted to demonstrate the value of in situanalysis,” Sylveus said. “This approach allows researchers to gain insights more quickly by analyzing and visualizing data during large simulation runs.”

The team focused on defining a workflow for in situ processing of images using a combination of PySpark, the Spark Python API (application programming interface), and Jupyter Notebooks, an open-source web application for creating and sharing documents that contain live code, equations, and visualizations. They ran the Apache Spark framework on Sage, a Cray Urika-GX system housed in Argonne’s Joint Laboratory for System Evaluation.

“Hopefully, our findings will help researchers who plan to use Apache Spark in the future by providing guidance on which resources, modules, and techniques work effectively,” Khine said.

The students’ work also provided some insights that will benefit ALCF’s visualization team as they continue to explore Apache Spark as a potential in situ analysis tool for the ALCF user community.

“This summer project helped us to understand the streaming library component of Apache Spark that connects to live simulation codes,” said ALCF computer scientist Silvio Rizzi, who mentored the students along with Joseph Insley, the ALCF’s visualization team lead.

After spending their summer at the ALCF, the three students were inspired by their opportunity to work at one of the nation’s leading institutions for scientific and engineering research.

“I am more encouraged and motivated to continue reaching toward my goal of becoming part of the research field,” Yousuf said.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

Source: Jim Collins, Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

South African Weather Service Doubles Compute and Triples Storage Capacity of Cray System

February 13, 2019

South Africa has made headlines in recent years for its commitment to HPC leadership in Africa – and now, Cray has announced another major South African HPC expansion. Cray has been awarded contracts with Eclipse Holdings Ltd. to upgrade the supercomputing system operated by the South African Weather Service (SAWS). Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This