ALCF Training Events Help Prepare Researchers for Current and Future Supercomputers

August 5, 2021

Aug. 5, 2021 — The ALCF recently hosted its first-ever GPU Hackathon and the annual Computational Performance Workshop to help attendees improve application performance on the facility’s high-performance computing resources.

As the Argonne Leadership Computing Facility (ALCF) continues its transition to deploying and operating supercomputers powered by graphics processing units (GPUs), training researchers to use the powerful new resources for science is becoming increasingly important.

Last year, the facility expanded its Theta supercomputer with GPUs to provide a dedicated resource for COVID-19 research as well as enhanced capabilities for artificial intelligence and deep learning studies. Known as ThetaGPU, the system has now been opened up to the broader research community. Looking ahead, the ALCF will continue to add GPU-accelerated machines to its stable of supercomputers with the Polaris system expected later this year and the Aurora exascale system set to arrive in 2022.

“GPU-accelerated systems are a relatively new thing for the ALCF user community,” said ALCF computational scientist Yasaman Ghadar, who helps lead the facility’s training events. “One of our goals as a facility is to teach researchers how our resources can be used to advance their science. We want people to be able to run their applications efficiently because their success is our success.”

The facility’s virtual workshops and training programs help fulfill this need by uniting researchers and application developers through collaborative hands-on sessions, guidance on using the latest high-performance computing (HPC) hardware and software, and access to its leadership-class supercomputers for code testing and optimization efforts.

The ALCF recently held two multi-day workshops, its first-ever GPU Hackathon and the annual ALCF Computational Performance Workshop. Both events were designed to connect attendees with staff and industry experts to help them improve application performance on ALCF systems. The ALCF is a U.S. Department of Energy (DOE) Office of Science User Facility at Argonne National Laboratory.

GPU Hackathon

In April, the ALCF partnered with NVIDIA to host the GPU Hackathon, a virtual event designed to help developers accelerate their codes on ThetaGPU, which is comprised of 24 NVIDIA DGX A100 nodes, using a portable programming model, such as OpenMP, or an AI framework of their choice. With 15 teams participating, the ALCF event was NVIDIA’s largest virtual GPU Hackathon yet.

Each team was assigned mentors for the duration of the event to provide guidance on porting and optimizing their code for NVIDIA GPUs.

The ALCF-NVIDIA GPU Hackathon hosted 15 teams to help them get their applications running efficiently on ThetaGPU. (Image: Argonne National Laboratory)

One of the teams that participated in the hackathon, team SIGMA, worked on a scalable remapper for climate applications. The Argonne-based team’s primary goal was to improve the current MPI-only workflow in the underlying Mesh-Oriented datABase (MOAB) library to enable multi-core and GPU computations. The team found that considerable GPU speedup and portability across multi-core systems and GPUs can be achieved by switching to tuned implementations using a well-tested performance portability programming ecosystem, such as Kokkos, or open-source performance portable libraries, such as ArborX.

Team SIGMA was able to achieve substantial performance improvements for several key kernels in the remapper on multi-core systems, and on GPUs for all the cases they tested. After the hackathon, the team is continuing their development work by integrating the kernels back into their production-ready, MOAB remapping workflow for DOE’s Energy Exascale Earth System Model (E3SM). E3SM is an ongoing, state-of-the-science Earth system modeling, simulation, and prediction project designed to help scientists better understand how earth system processes interact today and how they may evolve in the future.

“The hackathon allowed us to get some diverse, new applications up and running on Theta’s GPU nodes,” said Kevin Harms, ALCF performance engineering team lead and a hackathon mentor. “As a mentor for team SIGMA, we were able to hunker down and get a considerable amount of work done in a just few days. The team can now leverage another powerful computing resource to advance their development of E3SM.”

Team CRUNCH also made considerable progress with their conservative physics-informed neural network (cPINN) application at the hackathon. Their main objective was to profile cPINN on single and multi-node environments, find the bottlenecks, and optimize its performance for modeling large eddy simulations encountered in the field of computational fluid dynamics. The team updated their code to use the mpi4py and TensorFlow libraries. After several rounds of profiling and optimizations, they achieved excellent scalability on up to 128 GPUs (16 nodes).

“The hackathon was a great experience and with the mentors’ help, I was able to speed up my code substantially. I learned a lot about profiling our code in terms of GPU usage,” said Khemraj Shukla, assistant professor of applied mathematics at Brown University and member of team CRUNCH. “After the hackathon, I applied for Director’s Discretionary allocation on the ThetaGPU machine, and I have already started using it for my other projects.”

ALCF Computational Performance Workshop

In May, the ALCF hosted 117 attendees for its virtual Computational Performance Workshop. The annual event is designed to help researchers boost application performance and achieve computational readiness on ALCF systems in preparation for major allocation awards through DOE’s Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, the ASCR Leadership Computing Challenge (ALCC), and the ALCF Data Science Program (ADSP). Participants worked with ALCF and industry professionals through collaborative online sessions, and benchmarked and debugged their applications with exclusive reservations on ALCF computing systems.

“Our workshop participants typically come in with an idea of the science they want to pursue at the ALCF, but they need technical help to optimize their application and getting it running efficiently on our machines,” Ghadar said.

University of Ottawa professor Lucian Ivan attended the workshop to work on porting his computational fluid dynamics application on Theta. His research requires HPC systems to simulate complex fluid and plasma flows characterized by disparate spatial and temporal scales.

“The interaction is what I loved the most about the workshop,” Ivan said. “Being able to ask questions, interact, discuss, and learn more about the particular systems in a friendly conversation was a big takeaway for me. There are obviously lots of technical details and specific techniques that you learn, but I think it is always nice to have that close interaction.”

Ivan and his team also sought to increase their understanding of Argonne’s upcoming exascale machine, Aurora, so they could begin preparing their code, Blob (Balance, Law, and Bargain), for next-generation systems.

“It was very useful in the sense that now I can make some design choices of how I am going to develop the application I am working on,” Ivan said. “As a consequence of the workshop, I immediately applied for discretionary allocation so we can further develop our code.”

The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines. Supported by the U.S. Department of Energy’s (DOE’s) Office of Science, Advanced Scientific Computing Research (ASCR) program, the ALCF is one of two DOE Leadership Computing Facilities in the nation dedicated to open science.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science


Source: ALCF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire