AMD Announces Instinct MI100 Accelerator, Prepares to Ship Epyc ‘Milan’ CPUs

November 16, 2020

SANTA CLARA, Calif., Nov. 16, 2020 — During this year’s SC20 virtual tradeshow, AMD is showcasing its leadership in the high performance computing (HPC) industry. It launched the new AMD Instinct MI100 accelerator with ROCm 4.0 open ecosystem support and showcased a growing list of AMD EPYC CPU and AMD Instinct accelerator based deployments, and highlighted its collaboration with Microsoft Azure for HPC in the cloud. AMD also remains on track to begin volume shipments of the 3rd Gen EPYC processors with “Zen 3” core to select HPC and cloud customers this quarter in advance of the expected public launch in Q1 2021, aligned with OEM availability.

The new AMD Instinct MI100 accelerator is the world’s fastest HPC GPU accelerator for scientific workloads and the first to surpass the 10 teraflops (FP64) performance barrier. Built on the new AMD CDNA architecture, the AMD Instinct MI100 GPU enables a new class of accelerated systems for HPC and AI when paired with 2nd Gen AMD EPYC processors. Supported by new accelerated compute platforms from Dell, HPE, Gigabyte and Supermicro, the MI100, combined with AMD EPYC CPUs and ROCm 4.0 software, is designed to propel new discoveries ahead of the exascale era.

“No two customers are the same in HPC, and AMD is providing a path to today’s most advanced technologies and capabilities that are critical to support their HPC work, from small clusters on premise, to virtual machines in the cloud, all the way to exascale supercomputers,” said Forrest Norrod, senior vice president and general manager, Data Center and Embedded Solutions Business Group, AMD. “Combining AMD EPYC processors and Instinct accelerators with critical application software and development tools enables AMD to deliver leadership performance for HPC workloads.”

AMD and Microsoft Azure Power HPC In the Cloud

Azure is using 2nd Gen AMD EPYC processors to power its HBv2 virtual machines (VMs) for HPC workloads. These VMs offer up to 2x the performance of first-generation HB-series virtual machines, can support up to 80,000 cores for MPI jobs, and take advantage of 2nd Gen AMD EPYC processors’ up to 45% more memory bandwidth than comparable x86 alternatives.

HBv2 VMs are used by numerous customers including The University of Illinois at Urbana-Champaign’s Beckman Institute for Advanced Science & Technology which used 86,400 cores to model a plant virus that previously required a leadership class supercomputer and the U.S. Navy which rapidly deploys and scales enhanced weather and ocean pattern predictions on demand. HBv2 powered by 2nd Gen AMD EPYC processors also provides the bulk of the CPU compute power for the OpenAI environment Microsoft announced earlier this year.

AMD EPYC processors have also helped HBv2 reach new cloud HPC milestones, such as a new record for Cloud MPI scaling results with NAMD, Top 20 results on the Graph500, and the first 1 terabyte/sec cloud HPC parallel filesystem. Across these and other application benchmarks, HBv2 is delivering 12x higher scaling than found elsewhere on the public cloud.

Adding on to its existing HBv2 HPC virtual machine powered by 2nd Gen AMD EPYC processors, Azure announced it will utilize next generation AMD EPYC processors, codenamed ‘Milan’, for future HB-series VM products for HPC.

You can see more about the AMD and Azure collaboration in this video with Jason Zander of Azure and Lisa Su of AMD.

AMD Continues to Be the Choice for HPC

AMD EPYC processors and Instinct accelerators have the performance and capabilities to support numerous HPC workloads across a variety of implementations. From small clusters at research centers, to commercial HPC, to off premise and in the cloud, to exascale computing, AMD continues to provide performance and choice for HPC solutions.

Hewlett Packard Enterprise (HPE), CSC Finland and EuroHPC recently introduced a new pre-exascale system, LUMI. Based on the HPE Cray EX supercomputer architecture, LUMI will use next generation AMD EPYC CPUs and Instinct accelerators and is expected to provide a peak performance of 552 petaflops when it comes online in 2021, making it one of the fastest supercomputers in the world.

Beyond LUMI, AMD powered HPC systems continue to grow in volume. Since SC19, there have been more than 15 supercomputing systems announced using AMD EPYC CPUs, Instinct GPUs, or both. A highlight of the systems includes

  • Chicoma – Los Alamos National Laboratory – this system is based on the HPE Cray EX supercomputer architecture and uses 2nd Gen AMD EPYC CPUs, combined with 300 terabytes of system memory for COVID-19 research,
  • Corona – Lawrence Livermore National Laboratory – this system was recently upgraded with funding from the Coronavirus Aid, Relief and Economic Security (CARES) Act, adding nearly 1,000 AMD Instinct MI50 accelerators, pushing peak performance to more than 11 petaFLOPS,
  • Mammoth – Lawrence Livermore National Laboratory – the “big memory” cluster uses 2nd Gen AMD EPYC Processors to perform genomics analysis and graph analytics required by scientists working on COVID-19.
  • Northern Data – a distributed computing system in Europe that is using AMD EPYC CPUs and Instinct accelerators for large scale HPC applications such as rendering, artificial intelligence and deep learning,
  • Pawsey Supercomputing Centre – Using the HPE Cray EX supercomputer architecture and future AMD EPYC CPUs and AMD Instinct accelerators, the supercomputer at Pawsey will be Australia’s most powerful supercomputer.

In addition, AMD is also powering the following supercomputers: Anvil and Bell – Purdue University, Big Red 200 – Indiana University, Bridges 2 – Pittsburgh Supercomputing Center, CERN, European Centre for Medium-Range Weather Forecasts, Expanse – San Diego Supercomputer Center, Goethe University Frankfurt, IT4Innovations National Supercomputing Center, Jetstream 2 – Indiana University, Mahti – CSC, Mangi – University of Minnesota, National Oceanic and Atmospheric Administration, Red Raider – Texas Tech University, TinkerCliffs – Virginia Tech.

“With the Expanse supercomputer, our goal is to give scientists and researchers cloud-like access to a high-performance machine that can handle everything from astrophysics to zoology,” said Michael Norman, Director of the San Diego Supercomputer Center. “The 2nd Gen AMD EPYC processors have helped us achieve fantastic performance with Expanse, enabling our researchers to do more science than before. We also have a great collaboration with AMD and have worked together to create a forum for AMD HPC customers to share experiences, information and more, to better benefit HPC research.”

Paving the Path to Exascale Computing

To help researchers start on the path to exascale, AMD has provided Oak Ridge National Labs access to the new AMD Instinct MI100 accelerator, which delivers a giant leap in compute and interconnect performance. The Instinct MI100 accelerator enables a new class of accelerated systems and delivers true heterogeneous compute capabilities from AMD for HPC and AI. Designed to complement the 2nd Gen AMD EPYC processors, and built on the AMD Infinity Architecture, the AMD Instinct MI100 delivers true heterogeneous compute capabilities from AMD for HPC and AI.

“Frontier, powered by AMD, represents a huge increase in computational power compared to today’s systems. It’s going to allow scientists to answer questions that we didn’t have the answer to before,” said Bronson Messer, director of science, Oak Ridge Leadership Computing Facility. “The ability to run molecular simulations that aren’t just a few million atoms, but a few billion atoms, provides a more realistic representation of the science, and to be able to do that as a matter of course and over and over again will lead to a significant amount of important discoveries.”

AMD continues to provide the performance, capabilities and scale needed to power current and future HPC workloads, no matter if they are helping students at a research center, improving aerodynamic efficiency for an auto manufacturer, or providing valuable insights for critical medical breakthroughs. Read more about the AMD presence at SC20 and its HPC capabilities here.

About AMD

For more than 50 years AMD has driven innovation in high-performance computing, graphics and visualization technologies ― the building blocks for gaming, immersive platforms and the data center. Hundreds of millions of consumers, leading Fortune 500 businesses and cutting-edge scientific research facilities around the world rely on AMD technology daily to improve how they live, work and play. AMD employees around the world are focused on building great products that push the boundaries of what is possible. For more information about how AMD is enabling today and inspiring tomorrow, visit the AMD (NASDAQ: AMD) website.


 Source: Advanced Micro Devices, Inc.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in Computing vs. COVID-19: SC20 Edition

November 30, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

GENCI Supercomputer Simulation Illuminates the Dark Universe

November 30, 2020

What we can see and touch are, in the scheme of the universe, relatively minor components, with visible matter and tangible mass constituting just 16 percent of the universe’s mass and 30 percent of its energy, respect Read more…

By Oliver Peckham

The Present and Future of AI: A Discussion with HPC Visionary Dr. Eng Lim Goh

November 27, 2020

As HPE’s chief technology officer for artificial intelligence, Dr. Eng Lim Goh devotes much of his time talking and consulting with enterprise customers about how AI can benefit their business operations and products. Read more…

By Todd R. Weiss

SC20 Panel – OK, You Hate Storage Tiering. What’s Next Then?

November 25, 2020

Tiering in HPC storage has a bad rep. No one likes it. It complicates things and slows I/O. At least one storage technology newcomer – VAST Data – advocates dumping the whole idea. One large-scale user, NERSC storage architect Glenn Lockwood sort of agrees. The challenge, of course, is that tiering... Read more…

By John Russell

Exscalate4CoV Runs 70 Billion-Molecule Coronavirus Simulation

November 25, 2020

The winds of the pandemic are changing – for better and for worse. Three viable vaccines now teeter on the brink of regulatory approval, which will pave the way for broad distribution by April or May. But until then, COVID-19 cases are skyrocketing across the U.S. and Europe... Read more…

By Oliver Peckham

AWS Solution Channel

Add storage to your high-performance file system with a single click and meet your scalability needs

Many organizations have on-premises, high-performance workloads burdened with complex management and scalability challenges. Scaling data-intensive workloads on-premises typically involves purchasing more hardware, which can slow time to production and require high upfront investment. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman Institute for Advanced Science and Technology at the Universi Read more…

By Oliver Peckham

The Present and Future of AI: A Discussion with HPC Visionary Dr. Eng Lim Goh

November 27, 2020

As HPE’s chief technology officer for artificial intelligence, Dr. Eng Lim Goh devotes much of his time talking and consulting with enterprise customers about Read more…

By Todd R. Weiss

SC20 Panel – OK, You Hate Storage Tiering. What’s Next Then?

November 25, 2020

Tiering in HPC storage has a bad rep. No one likes it. It complicates things and slows I/O. At least one storage technology newcomer – VAST Data – advocates dumping the whole idea. One large-scale user, NERSC storage architect Glenn Lockwood sort of agrees. The challenge, of course, is that tiering... Read more…

By John Russell

Exscalate4CoV Runs 70 Billion-Molecule Coronavirus Simulation

November 25, 2020

The winds of the pandemic are changing – for better and for worse. Three viable vaccines now teeter on the brink of regulatory approval, which will pave the way for broad distribution by April or May. But until then, COVID-19 cases are skyrocketing across the U.S. and Europe... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Gordon Bell Prize Winner Breaks Ground in AI-Infused Ab Initio Simulation

November 20, 2020

The race to blend deep learning and first-principle simulation to speed up solutions and scale up problems tackled is one of the most exciting research areas in computational science today. This year’s ACM Gordon Bell Prize winner announced today at SC20 makes significant progress in that direction. Read more…

By John Russell

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

SC20 Keynote: Climate, Exascale & the Ultimate Answer

November 19, 2020

SC20’s keynote was delivered by renowned meteorologist and climatologist Bjorn Stevens, a director at the Max Planck Institute for Meteorology since 2008 and a professor at the University of Hamburg. In his keynote, Stevens traced the history of climate science from its earliest days through... Read more…

By Oliver Peckham

EuroHPC Exec. Dir. Talks Procurement, EPI, and Europe’s Efforts to Control its HPC Destiny

November 19, 2020

While much of the HPC community’s attention is fixed on SC20’s flood of news and new product announcements, Anders Dam Jensen, the newly-minted executive di Read more…

By Steve Conway

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This