Argonne and TAE Technologies Collaborate on Plasma Energy Research

November 27, 2019

Nov. 27, 2019 — “So that’s our problem,” notes Sean Dettrick, director of computational sciences at TAE Technologies. ​How do we get plasma hot enough to enable a fusion reaction to occur?”

If you’re the sun, you do it with immense gravitational pressure and a thermal engine that can generate temperatures of 27 million degrees F.

CAD rendering of TAE Technologies’ magnetic fusion plasma confinement device “Norman,” named for TAE co-founder Norman Rostoker. ALCF simulations help describe the dynamics of plasma inside the magnetic field and the way in which heat is confined in the system. Image courtesy of TAE Technologies.

If you’re TAE, you develop a succession of magnetic fusion plasma confinement devices as a means to generate unlimited electricity; a technology that could have far-reaching implications for the nation’s energy security.

But the process requires a continual and stable source of heat, the primary research challenge that brought TAE to the U.S. Department of Energy’s (DOE) Argonne National Laboratory.

Taking advantage of the high-performance computing resources at the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science User Facility, Dettrick and his colleagues are conducting large-scale simulations to understand how plasma loses heat to turbulent fluctuations in the confinement space, and inform the design of a future prototype reactor.

As we develop each prototype, we learn some new physics and then build enhanced machines that allow us to explore the physics better,” says Dettrick.

3D simulations of micro-turbulence in the field-reversed configuration performed using the ANC code on Theta. Electrostatic fluctuation after saturation is shown from two different perspectives (c, d). Image courtesy of Daniel Fulton, Kevin Hubbard, and Calvin Lau, TAE Technologies.

After performing computational studies at several other supercomputing facilities, the TAE team found that the memory hierarchy and threading multi-core architecture of ALCF’s supercomputer Theta was better suited to its algorithms, notes Calvin Lau, a computational plasma physicist at TAE.

Dettrick and Lau are applying those benefits to simulations that describe both the dynamics of the plasma inside the magnetic field, and the way in which heat is confined — and potentially lost — in the system.

This is a multiscale physics problem and this group is tackling it with a hierarchy of codes,” says Elise Jennings, an ALCF computational scientist. ​We helped them realize the code enhancements and optimizations that are needed to resolve very small-scale turbulent fluctuations in the plasma and ensure it agrees with results from the global stability code.”

Global stability describes how the plasma moves around inside the magnetic field and how that movement can be influenced by external actuators, like the neutral particle beams, and can change the shape of the magnetic fields.

These simulations help the researchers create control algorithms in an effort to better maintain the plasma in optimal operating conditions within TAE’s fifth-generation experimental reactor called ​Norman.”

Norman” works by generating a magnetic field that confines a hydrogen plasma. Beams made of neutral high-energy particles are injected into that plasma to begin a heating process that will eventually take the plasma to billions of degrees Fahrenheit.

If it gets hot enough and dense enough, the fusion reaction releases about 10 MeV of energy in the process — energy that can be extracted and used for larger-scale energy production.

But, the stability of the plasma and the ability to maintain the intense heat required to keep the thermal engine revving are issues that TAE must overcome.

For another set of simulations on Theta, Lau is using large-scale, first principles codes that he developed in collaboration with researchers at the University of California, Irvine, to understand the microscopic turbulence that leads to heat losses.

Essentially, we are investigating waves produced in the plasma that give you turbulence, which can knock out particles or heat and energy,” says Lau. ​Not only do you want to understand how well heat and particles are confined, but how to mitigate any loss.”

Experiments with previous generations of devices showed that plasma confinement actually improves as the temperature increases, which, researchers note, is advantageous for planning a fusion reactor.

Lau has been working to find out why this happens, publishing results in a recent issue of the journal Nuclear Fusion. The article, ​Cross-separatrix simulations of turbulent transport in the field-reversed configuration,” is an extension of earlier work that found that the mechanisms for driving turbulence exist largely outside of the core plasma.

The core itself does not have the mechanism that produces the turbulence, so that’s the reason for the better performance inside the core plasma,” said Lau. ​If we understand the physics behind those measurements, then we can extrapolate to a future machine.”

To get a better handle on the physics, the group may need more computational fire power. Currently, they are only able to simulate the confinement vessel region, which measures nearly 80 feet long and stands two stories high.

With the promise of exascale computing right around the corner and the delivery of one of the nation’s first exascale systems, Aurora, to Argonne in 2021, there is the potential for TAE to dramatically increase the domain size of the simulation.

The sort of multiscale problems that TAE is addressing will require DOE leadership computing facilities and advanced resources, like Aurora, as the simulations scale up. The potential for scientific discovery and innovation with exascale capabilities is enormous,” says Jennings.

To keep apprised of and provide input on the latest developments in exascale, TAE maintains a strong presence on the industry council of DOE’s Exascale Computing Project (ECP), a collaboration between DOE’s Office of Science and its National Nuclear Security Administration, to deliver a capable exascale computing ecosystem. Serving as an external advisory board, the council is made up of industry leaders interested in using exascale computing capabilities to inform and accelerate their research and development efforts.

The promise of exascale is that we can look at whole systems,” says David Martin, manager of Industry Partnerships and Outreach at the ALCF and co-executive director of the ECP Industry Council. ​Instead of just modeling a cylinder, we model the whole engine. Instead of modeling a jet engine, we model the whole airplane. For TAE, it’s modeling the whole confinement system, bringing us another step closer to clean, unlimited energy.”

TAE received ALCF computing time and resources through the U.S. Department of Energy’s Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

About The U.S. Department of Energy’s Office of Science

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science


Source: John Spizzirri, Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This