Argonne Captures 3 R&D 100 Awards for Innovative Technology

November 5, 2021

Nov. 5, 2021 — Three technologies developed by researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and partner organizations have been named as 2021 R&100 Award winners, building on a decades-long history of wins.

Argonne’s R&D 100 winnersR&D 100 Winners (top left to bottom right): Franck Cappello, Sheng Di, Pinaki Pal, Robert Ross, Philip Carns, Sibendu Som. (Image by Argonne National Laboratory.)

Recognizing the 100 most innovative technologies of the past year, the R&100 Awards are considered the ​“Oscars” of innovation. Sponsored by R&D World magazine, the renowned worldwide competition received entries from 17 countries/regions.

Started in 1963, the R&100 Awards serve as the nation’s most prestigious innovation awards program, honoring R&D pioneers and their revolutionary ideas in science and technology. Technologies are chosen from three categories: Mechanical/Materials, Process/Prototyping and Software/Services.

Argonne scientists have received more than 130 R&100 Awards since the competition began. Past winners include Fortune 500 companies, DOE national laboratories, academic institutions and smaller companies.

The Argonne technologies described below were selected as winners by an independent panel of more than 40 industry leaders. Winners were recognized at the virtual 2021 R&100 Conference on Oct. 2122.

ML-GA: a Machine Learning-Genetic Algorithm for Rapid Product Design Optimization

Pinaki Pal, Opeoluwa Owoyele, Ahmed Abdul Moiz, Janardhan Kodavasal, Sibendu Som

Machine Learning — Genetic Algorithm (ML-GA) is a unique software technology that harnesses the power of advanced machine learning to speed up the virtual design of products and manufacturing processes across a wide range of industries.

Industrial product design involves a large number of control parameters that are often time-consuming and costly to optimize, even with computer modeling. By embedding ML into the design process, ML-GA dramatically speeds up computer-aided engineering simulation-driven virtual prototyping, dramatically shrinking the product development phase from a few months to a few days compared with traditional approaches. In doing so, the software reduces computational costs as well.

ML-GA operates on a novel combination of advanced ensemble ML-based surrogate modeling, adaptive sampling of design space (via active learning) for on-the-fly refinements of the ML surrogate model and a GA optimizer — all within an automated, modular, end-to-end workflow.

Owing to its highly parallelizable and portable framework, ML-GA can be readily coupled with any simulation tool and run efficiently on high performance computing (HPC) clusters/supercomputers and cloud-based platforms. These unique features allow for easy adoption by industries ranging from automotive, aerospace and defense to energy and oil and gas.

ML-GA is funded with support from DOE’s Vehicle Technologies Office (VTO) through a Technology Commercialization Fund (TCF) project. (VTO is part of the Office of Energy Efficiency and Renewable Energy [EERE].) ML-GA was recently licensed on a nonexclusive basis by industry partner Parallel Works Inc., a Chicago-based HPC software platform company, as part of the TCF project.

Mochi: a Customizable Data Navigation Tool

Robert Ross, Philip Carns, Matthieu Dorier, Robert Latham, George Amvrosiadis, Charles Cranor, Tyler Reddy, Robert Robey, Dana Robinson, Galen Shipman, Shane Snyder, Jerome Soumagne, Qing Zheng

While most scientists rely on data storage systems to gather and analyze data, many struggle to manage the data generated by their research. Mochi is a novel navigation tool that offers a solution. Rather than using a one-size-fits-all approach to data, Mochi allows scientists to rapidly customize a suite of data services to suit the needs of a specific domain and problem. By shaving weeks or months off the time needed to produce actionable information from collected data, scientists are able to realize their discoveries faster.

Composition is key to Mochi’s success. The open-source, state-of-the-art tool offers communication, data storage, concurrency management and group membership capabilities, along with a collection of building blocks scientists can use to craft a data storage system designed to address their own specific needs. Each scientist benefits from using a specialized storage service without having to create one from scratch. These specialized services offer greater efficiency and flexibility than a traditional monolithic file system and are applicable to new technologies as they emerge.

Regardless of which components are used, they all share the same underlying communication framework, known as Mercury, to efficiently move large volumes of data between storage and compute resources. Mochi is scalable, enables high performance and can help reduce the coding and maintenance burden for teams building data services.

While research continues on Mochi, the core components are widely used inside and outside of Argonne.

SZ: a Lossy Compression Framework for Scientific Data

Franck Cappello, Sheng Di, Jon Calhoun, Griffin Dube, Ali Murat Gok, Sian Jin, Xin Liang, Cody Rivera, Dingwen Tao, Jiannan Tian, Robert Underwood, Chengming Zhang, Kai Zhao

Exascale simulations and next-generation scientific instruments are important to address issues such as climate change, cosmology, materials science, advanced manufacturing and the development of new disease treatments and drugs. Many of these simulations and instruments need methods to reduce significantly the data they produce.

Developed by Argonne scientists, SZ is a lossy compression framework for scientific floating-point data featuring an innovative, highly customizable and configurable design with strict compression error control. The technology was initiated at Argonne along with university and industry collaborators. Argonne is the lead and main developer of the SZ compressor.

With its unique combination of capabilities, SZ offers an exceptionally wide scope of application use cases for scientific simulations and instrument facilities and demonstrates excellent performance in compression ratios, speed and accuracy. SZ can be used to visualize data, accelerate simulation, reduce the simulation data footprint for storage, compute larger simulation problems (compression in memory), accelerate execution by avoiding recomputation and reducing memory bandwidth bottlenecks, and reduce instrument data stream intensity.

SZ has applications in simulation (cosmology, quantum chemistry, molecular dynamics, climate), seismic imaging and X-ray crystallography. It is also used by researchers to advance the development of compression methods for scientific data.

The SZ project is supported primarily by DOE’s Exascale Computing Project, a collaborative effort of DOE’s Office of Science and the National Nuclear Security Administration.

The Office of Energy Efficiency and Renewable Energy’s (EERE) mission is to accelerate the research, development, demonstration, and deployment of technologies and solutions to equitably transition America to net-zero greenhouse gas emissions economy-wide by no later than 2050, and ensure the clean energy economy benefits all Americans, creating good paying jobs for the American people — especially workers and communities impacted by the energy transition and those historically underserved by the energy system and overburdened by pollution.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://​ener​gy​.gov/​s​c​ience.


Source: Beth Burmahl, Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire