Argonne Collaborates on HPC4EI Projects for Cleaner Energy

October 5, 2022

Oct. 5, 2022 — The Argonne National Laboratory is working closely with industry leaders on two new projects that will use HPC to advance the development of carbon capture technology and improve the energy efficiency of chemical manufacturing processes.

Companies are constantly looking for ways to cut their energy bills and reduce their carbon footprint. But getting promising new technologies to market is a process that can often take years. It may also be beyond the scope of any one company to tackle on their own.

To help address this challenge, the U.S. Department of Energy (DOE) has awarded DOE’s Argonne National Laboratory with $600,000 in federal funding to work on two new projects that will advance cutting edge manufacturing and clean energy technologies. These projects will leverage the scientific expertise and high performance computing (HPC) resources at Argonne to improve energy efficiency in chemical manufacturing and advance the use of carbon capture technology.

Both projects are part of the DOE’s High Performance Computing for Energy Innovation (HPC4EI) initiative. This DOE initiative invites companies to apply for funding to work with a national laboratory, leveraging their world-class computing resources and expertise to advance the national clean energy agenda.

Modeling Carbon Capture Technology for Use in Industrial Gas Turbines

Argonne is helping Solar Turbines Incorporated model the use of cost-effective carbon capture technologies on industrial gas turbines used for power generation, marine propulsion, and oil and gas production. The technology recirculates part of the exhaust back into the turbine engine. This increases the CO2 concentration in the final exhaust stream to a desired level, lowering the cost of carbon capture and sequestration. However, if too much exhaust gas is reused, it can cause the flame powering the turbine to sputter and eventually go out. The team is working together to simultaneously optimize the flame stability in the gas turbine, while maximizing the potential for carbon capture.

By cutting the cost of capturing CO2 from the exhaust before it enters the atmosphere, the adoption of this technology has the potential to drastically reduce greenhouse gas emissions. This could cut the carbon footprint of gas power plants as well as from gas turbines in a variety of other industrial applications.

Argonne’s scientists and engineers have more than ten years of experience using HPC and modeling to optimize the performance and energy efficiency of engines in cars, trucks, and heavy equipment. But this is the first time they will be tackling an engine at this scale. Because of the size and the complexity of the gas turbines, only a supercomputer like those at Argonne will be able to handle modeling the flows and chemical reactions, while optimizing the turbine engine performance. By using this virtual platform, Solar Turbines can shave months or even years off the product testing and development process, rapidly accelerating the time-to-adoption of this promising new technology.

Optimizing the Performance of Chemical Manufacturing Equipment

Argonne will also be working with the largest chemical manufacturing company in the U.S. —The Dow Chemical Company — to help them optimize the efficiency of advanced mixing equipment. Using computational fluid dynamics (CFD), the team will model the complex flow inside gas-liquid turbulent jet mixers used in chemical manufacturing. Then, they will optimize the internal design of the mixing equipment to maximize the performance with minimal energy use. This will be done using a combination of the CFD model and Argonne’s unique machine learning (ML) tool known as ActivO.

This project has the potential for enormous energy savings. When used effectively, turbulent jet mixers use 2-3 times less energy than traditional mechanical mixing equipment. On top of the energy savings, the adoption of this technology will allow Dow to reduce downtimes, saving millions of dollars per plant.

Argonne scientists have extensive experience using CFD and ML to optimize turbulent mixing within engines. The Dow project allows Argonne scientists to apply their existing tools and expertise to a new field. It will also provide a clear demonstration case for using HPC to accelerate transformational technological advances in the chemical industry.

Companies chose to work with Argonne for their HPC4EI projects because of the experience Argonne scientists have using HPC for modeling and optimization of manufacturing processes and new energy-efficient technologies. They also came to Argonne to access some of the fastest supercomputers in the world.

At the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science user facility, companies can access computers that are up to 100 times more powerful than systems typically used by corporations. By combining these supercomputing resources with state-of-the-art modeling, simulation, and data science, Argonne can help companies bring their energy innovation projects online much faster than they would be able to do on their own.

By helping manufacturers harness the raw power of HPC, the HPC4EI program helps companies improve performance, reduce emissions, and advance the development of clean energy technologies. Argonne is proud to be part of this effort. Together, we are working to accelerate the transition to a clean energy economy.

The HPC4EI program is sponsored by the Department of Energy’s Advanced Manufacturing Office (AMO) within the Energy Efficiency and Renewable Energy (EERE) Office and the Office of Fossil Energy and Carbon Management (FECM).

About ALCF

The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines. Supported by the U.S. Department of Energy’s (DOE’s) Office of Science, Advanced Scientific Computing Research (ASCR) program, the ALCF is one of two DOE Leadership Computing Facilities in the nation dedicated to open science.


Source: Liz Thompson, ALCF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaboration, an Intel executive said last week. There are close t Read more…

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

AWS Solution Channel

Shutterstock 110419589

Thank you for visiting AWS at SC22

Accelerate high performance computing (HPC) solutions with AWS. We make extreme-scale compute possible so that you can solve some of the world’s toughest environmental, social, health, and scientific challenges. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built on technology developed at Harvard and MIT, QuEra, is one of Read more…

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaborat Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the c Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

2022 Gordon Bell Prize Goes to Plasma Accelerator Research

November 17, 2022

At the awards ceremony at SC22 in Dallas today, ACM awarded the 2022 ACM Gordon Bell Prize to a team of researchers who used four major supercomputers – inclu Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Leading Solution Providers

Contributors

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire