Argonne Harnesses Virtual Power to Address Complex Challenges in Nuclear Science

September 17, 2019

September 17, 2019 — Designing a new type of nuclear reactor is a complicated endeavor requiring billions of dollars and years of development.  What’s more, there are a vast array of different proposed configurations for next-generation nuclear reactors that scientists hope will produce electricity safely, cost effectively and efficiently.

Because of the high cost, scientists are harnessing the power of high-performance computing to tackle many of the challenges associated with reactor design and performance.

At the U.S. Department of Energy’s (DOE) Argonne National Laboratory, researchers are running a broad suite of computational codes on the laboratory’s supercomputers housed at the Argonne Leadership Computing Facility, a DOE Office of Science User Facility, leveraging resources available at only a few sites around the world to address some of the most complex and large-scale scientific challenges.

We have a good understanding of the laws underpinning reactor physics and thermal hydraulics, so modeling and simulation tools give us the ability to analyze potential reactor designs virtually,” said Argonne nuclear engineer Emily Shemon.

Inside the model

The end goal of nuclear modeling and simulation efforts at Argonne and elsewhere in the DOE’s national laboratory complex is to remove some of the initial obstacles that the nuclear industry faces as it contemplates design, licensing and deployment of next-generation reactors. ​The purpose of the labs’ modeling efforts is to fill in the knowledge gaps for industry,” Shemon said. ​They may be able to use our codes and models to inform their design decisions if we can do some of the legwork.”

One major research effort at Argonne focuses on simulating the turbulent flow in sodium-cooled fast reactors. These reactors have intrigued scientists for decades because of their ability to use fuel efficiently, producing less waste than the existing fleet of light water-cooled reactors.

Sodium-cooled fast reactors also have a considerable inherent advantage: there are several built-in safety measures that kick in automatically even in cases when the reactor systems fail.

As coolant flows around a bundle of fuel pins in the reactor core, it carries heat away from the fuel assembly. Heated sodium tends to float on top of cooler sodium, creating a lava lamp-like circulation pattern that prevents any one area from getting too hot.

Visualizing the intricate movements of the whorls and eddies of hot and cold fluid requires high-performance computing, said Argonne computational engineer Aleksandr Obabko. ​We try to model turbulence directly, as close to the needed resolution as possible, using supercomputers,” he said. ​We need supercomputers because there are a lot of vortices to model, and because they all contribute to the process of mixing.”

Argonne researchers also use models to illustrate the geometric effects of the reactor or the fuel assembly on the heat transport and fluid flow.

To model the mixing and turbulence in a nuclear reactor, Obabko and his colleagues use a computational code called Nek5000 to solve questions related to computational fluid dynamics. Nek5000 is a general purpose fluid mechanics code used for modeling vascular flows, aerodynamics, and internal combustion engines as well as nuclear reactor environments.

Nek5000 provides a number of advantages over competing computational algorithms, but most notably it dramatically cuts the time and computational expense needed to resolve solutions. ​By the time most other codes get to 80 percent of the solution, we’re at 90 percent, and that can make a big difference in terms of computing expense,” said Argonne computational scientist Paul Fischer, who designed Nek5000.

Validating the models and exploring new frontiers

By themselves, computer codes can shed only so much light on the inner workings of a nuclear reactor. To know how precisely the output of a computational model conforms to reality requires the ability to compare the results with the data from experiments, a process known as validation. For some advanced reactor types, such experimental data are limited and expensive to generate to cover all design variations. Therefore, modern modeling and simulation capabilities aim to achieve a higher level of predictiveness without relying so heavily on experiments.

We still can’t fully trust our computational models without experimental data, but we can make use of whatever limited experimental data are available,” Shemon said. ​So, what we have is an iterative process in which designers use our software to do the preliminary analysis, allowing them to narrow down design choices or make improvements to their systems, and validate their final design with more targeted tests.”

A truly useful model not only reproduces what scientists can see experimentally, but it can also complement known data and allow researchers to make predictions with more confidence. This is particularly important for advanced reactor designs with different kinds of coolant and fuel choices.

Because there are so many potential new designs that have been proposed — ranging from sodium-cooled fast reactors like those studied by Obabko to those cooled by gas or by molten salts — advanced computing represents the best avenue researchers have to assess the capabilities of their designs.

In most cases, computer codes must exchange information about the heat generation rates, temperatures, and stresses and strains because the neutronic, thermal and structural phenomena have an impact on each other. In this way, Argonne’s nuclear modeling program has two goals: First, to develop core reactor physics, thermal hydraulics, structure mechanics, and fuels and materials modeling tools; second, to create multiphysics analysis capabilities that capture the interdependence among all these fields.

Reaping the benefits

Even when researchers do not have the ability to directly validate their codes, developing higher-fidelity closer-to-first-principles models represents an improvement in many ways on the low-order codes that may have been validated in the past. For instance, higher-fidelity codes allow researchers to obtain a more precise understanding of quantities for which they previously only had an average value.

Previous low-order codes were accurate, but they were, in a sense, blurry,” Shemon said. ​These new high-fidelity codes give us the ability to be much more precise in terms of energy, space and time.”

One way in which the high-fidelity codes can improve the design and operation of a reactor is by reducing uncertainty in the tolerances — or temperature margins — required for safe and efficient reactor operation. In one example, Argonne researchers run models with best-case scenarios, in which fuel pins and their cladding are manufactured exactly to specifications. Then, they also run worst-case scenarios, in which these components differ from their ideal to account for uncertainties and tolerances, and compare the difference in how the reactor virtually behaves to evaluate the safety margins.

In Shemon’s view, this project and others at Argonne support a broader, overarching objective. ​Our main goal is to increase the availability of information for advanced reactor designs,” she said. ​We’re trying to enable safer, faster, more economical design through modeling and simulation. Everything we do is geared toward that.”

Funding

The work is funded by the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program within DOE’s Office of Nuclear Energy. The research is also supported by DOE’s Advanced Scientific Computing Research (ASCR) program and the Exascale Computing Project (ECP), a collaborative effort of the DOE Office of Science and the National Nuclear Security Administration, that seeks to provide breakthrough modeling and simulation solutions through exascale computing.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications and hardware technology, to support the nation’s exascale computing imperative.

Established by Congress in 2000, the National Nuclear Security Administration (NNSA) is a semi-autonomous agency within the U.S. Department of Energy responsible for enhancing national security through the military application of nuclear science. NNSA maintains and enhances the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear explosive testing; works to reduce the global danger from weapons of mass destruction; provides the U.S. Navy with safe and effective nuclear propulsion; and responds to nuclear and radiological emergencies in the U.S. and abroad. Visit nnsa​.ener​gy​.gov for more information.

About the DOE Office of Nuclear Energy

The DOE Office of Nuclear Energy’s mission is to advance nuclear power to meet the nation’s energy, environmental and national security needs. For more information, visit the Office of Nuclear Energy website.

About Argonne National Laboratory 

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

About the U.S. Department of Energy’s Office of Science 

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/


Source: Jared Sagoff, Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Amid Upbeat Earnings, Intel to Cut 1% of Employees, Add as Many

January 24, 2020

For all the sniping two tech old timers take, both IBM and Intel announced surprisingly upbeat earnings this week. IBM CEO Ginny Rometty was all smiles at this week’s World Economic Forum in Davos, Switzerland, after  Read more…

By Doug Black

Indiana University Dedicates ‘Big Red 200’ Cray Shasta Supercomputer

January 24, 2020

After six months of celebrations, Indiana University (IU) officially marked its bicentennial on Monday – and it saved the best for last, inaugurating Big Red 200, a new AI-focused supercomputer that joins the ranks of Read more…

By Staff report

What’s New in HPC Research: Tsunamis, Wildfires, the Large Hadron Collider & More

January 24, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware. In fact, the company's simulated bifurcation algorithm is Read more…

By Tiffany Trader

Energy Research Combines HPC, 3D Manufacturing

January 23, 2020

A federal energy research initiative is gaining momentum with the release of a contract award aimed at using supercomputing to harness 3D printing technology that would boost the performance of power generators. Partn Read more…

By George Leopold

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

TACC Highlights Its Upcoming ‘IsoBank’ Isotope Database

January 22, 2020

Isotopes – elemental variations that contain different numbers of neutrons – can help researchers unearth the past of an object, especially the few hundred isotopes that are known to be stable over time. However, iso Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware Read more…

By Tiffany Trader

In Advanced Computing and HPC, Dell EMC Sets Sights on the Broader Market Middle 

January 22, 2020

If the leading advanced computing/HPC server vendors were in the batting lineup of a baseball team, Dell EMC would be going for lots of singles and doubles – Read more…

By Doug Black

DNA-Based Storage Nears Scalable Reality with New $25 Million Project

January 21, 2020

DNA-based storage, which involves storing binary code in the four nucleotides that constitute DNA, has been a moonshot for high-density data storage since the 1960s. Since the first successful experiments in the 1980s, researchers have made a series of major strides toward implementing DNA-based storage at scale, such as improving write times and storage density and enabling easier file identification and extraction. Now, a new $25 million... Read more…

By Oliver Peckham

AMD Recruits Intel, IBM Execs; Pending Layoffs Reported at Intel Data Platform Group

January 17, 2020

AMD has raided Intel and IBM for new senior managers, one of whom will replace an AMD executive who has played a prominent role during the company’s recharged Read more…

By Doug Black

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

White House AI Regulatory Guidelines: ‘Remove Impediments to Private-sector AI Innovation’

January 9, 2020

When it comes to new technology, it’s been said government initially stays uninvolved – then gets too involved. The White House’s guidelines for federal a Read more…

By Doug Black

IBM Touts Quantum Network Growth, Improving QC Quality, and Battery Research

January 8, 2020

IBM today announced its Q (quantum) Network community had grown to 100-plus – Delta Airlines and Los Alamos National Laboratory are among most recent addition Read more…

By John Russell

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

Summit Has Real-Time Analytics: Here’s How It Happened and What’s Next

October 3, 2019

Summit – the world’s fastest publicly-ranked supercomputer – now has real-time streaming analytics. At the 2019 HPC User Forum at Argonne National Laborat Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This