Argonne-Led Team Wins Technology Challenge at SC19

December 19, 2019

Dec. 19, 2019 — An extensive collaboration led by Argonne recently won the Inaugural SCinet Technology Challenge at the Supercomputing 19 conference by demonstrating real-time analysis of light source data from Argonne’s APS to the ALCF.

Accelerator-based light sources — large-scale instruments used to investigate the fundamental properties of matter — generate large amounts of data that require computational analysis. By designing an innovative method to support such investigations, a large collaboration led by the U.S. Department of Energy’s (DOE) Argonne National Laboratory recently won the Inaugural SCinet Technology Challenge during the recent Supercomputing 19 (SC19) conference in Denver.

An Argonne-led collaboration won the first SCinet Technology Challenge at SC19 in November, for their work on real-time streaming data analysis. Argonne team members Ian Foster, Zhengchun Liu, Tekin Bicer, and Michael E. Papka are pictured with the award. Image courtesy of Argonne National Laboratory.

In addition to those from Argonne, the extensive team included members from Northwestern University, the Starlight Communications Exchange, Northern Illinois University, the University of Chicago, and the Metropolitan Research and Education Network.

Working directly from the SC19 show floor, the team demonstrated real-time analysis of light source data from Argonne’s Advanced Photon Source (APS) streamed at close to 100 gigabits per second to the Argonne Leadership Computing Facility (ALCF), both DOE Office of Science User Facilities.

“We built a software infrastructure that connects APS beamlines with remote high-performance computing resources and demonstrated that even computationally demanding data streams can be analyzed with low latency,” said Tekin Bicer, an assistant computer scientist at Argonne, who led the demonstration at SC19. ​“We put significant time and effort into this work, so I am very happy that the importance of our project and demonstration has been recognized.”

The team analyzed a portion of the data using 16,384 cores on Argonne’s Theta supercomputer. The analysis output was then streamed to Argonne’s visualization cluster, Cooley, which rendered a 3D image. The final output was streamed back to the show floor in real time, approximately 10-20 projections per frame, and with data remaining in memory throughout the entire workflow.

“This is truly fabulous, and a great testament to the effort of the entire team,” said Stephen Streiffer, interim deputy laboratory director for science, associate laboratory director for Photon Sciences, and director of the APS at Argonne.

“In order to make full use of the upcoming APS Upgrade, we really need to be able to analyze data in close to real time to make decisions on what to do next,” added Stefan Vogt, associate director of Argonne’s X-ray Science division. ​“Such analysis, and the fact that we have no place to put huge amounts of raw data, will require the ability to stream data into HPC-type resources as we acquire it.”

The seed for Argonne’s participation in the technology challenge was sown in May 2019, when Cees de Laat, a professor at the University of Amsterdam and an SC19 technology challenge jury member, encouraged Argonne’s Rajkumar Kettimuthu to participate.

“I got very excited about the technology challenge as its goal was very much in line with the research and development activities of our group,” said Kettimuthu, a computer scientist on the team. ​“My colleagues, Tekin Bicer and Zhengchun Liu, readily took the lead on this project and put in a tremendous amount of work. Such contributions from the entire team and strong support from the ALCF operations team made the demo successful.”

As part of the workflow demonstrated by the team during the competition, the researchers streamed data from the SC19show floor in Denver to Argonne’s Theta system using zeroMQ and Globus data transfer software. The data streamed was equivalent to that from 10 high-data-rate light source beamlines.

The supercomputer processed the data from one of the beamlines in real time, storing the remainder for later analysis. This real-time processing step involves using the lab’s Cooley visualization cluster for iterative reconstructions of a 3Dvolume from 2D images obtained at a microtomography imaging beamline.

The team streamed the processed results back to the SC19 show floor in Denver for near real-time visualization. The first results streamed within 5-10 seconds of the start of the experiment and continued at that rate until the end of the experiment. Careful management was required to ensure that the streaming flows of various data acquisition and analyses could co-exist without interference.

“The team really pushed forward the limits of technology,” said Ian Foster, Argonne distinguished fellow and director of the Data Science and Learning division. Foster initiated the ​“bandwidth challenge” at SC2000 — a precursor to the inaugural SCinet Technology Challenge — to spur the HPC community toward delivering innovative applications that will efficiently utilize the SCinet network and add significant value.

A demonstration of this scale requires a tremendous amount of teamwork, particularly when last-minute obstacles arise. For example, the team ran into an unexpected network problem just a few hours before the demonstration. Significant coordination and outstanding teamwork by ALCF operations and Argonne networking staff resulted in diagnosis and repair of a subtle network failure just 20 minutes before the demonstration.

“Demonstrations like this provide a glimpse into the future of how science will be done across DOE facilities, while at the same time stress testing the infrastructure we have in place today,” said Michael E. Papka, deputy associate laboratory director and director of the ALCF.

Joe Mambretti, director of StarLight and the International Center for Advanced Internet Research at Northwestern, agrees. ​“The innovative techniques shown throughout this demonstration can not only be applied to light source investigations, they can be more broadly applied to many types of science workflows requiring real-time, data-intensive streaming from source to computational resources to visualization.”

The winning team consists of Tekin Bicer, Zhengchun Liu, Doga Gursoy, Junjing Deng, Jeff Klug, Vincent De Andrade, Pavel Shevchenko, Francesco De Carlo, Stefan Vogt, Venkatram Vishwanath, and Stefan Wild, Argonne National Laboratory; Michael E. Papka, Argonne National Laboratory and Northern Illinois University; Rajkumar Kettimuthu and Ian T. Foster, Argonne National Laboratory and the University of Chicago; Jim Chen, Starlight Communications Exchange and Northwestern University; and Joe Mambretti, Starlight Communications Exchange, Northwestern University, and the Metropolitan Research and Education Network.


Source: Rajkumar Kettimuthu, Argonne Leadership Computing Facility

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire