ALCF, NCSA Supercomputers Generate Movies of the Universe

August 28, 2017

ARGONNE, Ill., Aug. 28, 2017 — If you have ever had to wait those agonizing minutes in front of a computer for a movie or large file to load, you’ll likely sympathize with the plight of cosmologists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory. But instead of watching TV dramas, they are trying to transfer, as fast and as accurately as possible, the huge amounts of data that make up movies of the universe – computationally demanding and highly intricate simulations of how our cosmos evolved after the Big Bang.

In a new approach to enable scientific breakthroughs, researchers linked together supercomputers at the Argonne Leadership Computing Facility (ALCF) and at the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign (UI). This link enabled scientists to transfer massive amounts of data and to run two different types of demanding computations in a coordinated fashion – referred to technically as a workflow.

What distinguishes the new work from typical workflows is the scale of the computation, the associated data generation and transfer and the scale and complexity of the final analysis. Researchers also tapped the unique capabilities of each supercomputer: They performed cosmological simulations on the ALCF’s Mira supercomputer, and then sent huge quantities of data to UI’s Blue Waters, which is better suited to perform the required data analysis tasks because of its processing power and memory balance.

For cosmology, observations of the sky and computational simulations go hand in hand, as each informs the other. Cosmological surveys are becoming ever more complex as telescopes reach deeper into space and time, mapping out the distributions of galaxies at farther and farther distances, at earlier epochs of the evolution of the universe.

The very nature of cosmology precludes carrying out controlled lab experiments, so scientists rely instead on simulations to provide a unique way to create a virtual cosmological laboratory. “The simulations that we run are a backbone for the different kinds of science that can be done experimentally, such as the large-scale experiments at different telescope facilities around the world,” said Argonne cosmologist Katrin Heitmann. “We talk about building the ‘universe in the lab,’ and simulations are a huge component of that.”

Not just any computer is up to the immense challenge of generating and dealing with datasets that can exceed many petabytes a day, according to Heitmann. “You really need high-performance supercomputers that are capable of not only capturing the dynamics of trillions of different particles, but also doing exhaustive analysis on the simulated data,” she said. “And sometimes, it’s advantageous to run the simulation and do the analysis on different machines.”

Typically, cosmological simulations can only output a fraction of the frames of the computational movie as it is running because of data storage restrictions. In this case, Argonne sent every data frame to NCSA as soon it was generated, allowing Heitmann and her team to greatly reduce the storage demands on the ALCF file system. “You want to keep as much data around as possible,” Heitmann said. “In order to do that, you need a whole computational ecosystem to come together: the fast data transfer, having a good place to ultimately store that data and being able to automate the whole process.”

In particular, Argonne transferred the data produced immediately to Blue Waters for analysis. The first challenge was to set up the transfer to sustain the bandwidth of one petabyte per day.

Once Blue Waters performed the first pass of data analysis, it reduced the raw data – with high fidelity – into a manageable size. At that point, researchers sent the data to a distributed repository at Argonne, the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory and the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Cosmologists can access and further analyze the data through a system built by researchers in Argonne’s Mathematics and Computer Science Division in collaboration with Argonne’s High Energy Physics Division.

Argonne and University of Illinois built one such central repository on the Supercomputing ’16 conference exhibition floor in November 2016, with memory units supplied by DDN Storage. The data moved over 1,400 miles to the conference’s SciNet network. The link between the computers used high-speed networking through the Department of Energy’s Energy Science Network (ESnet). Researchers sought, in part, to take full advantage of the fast SciNET infrastructure to do real science; typically it is used for demonstrations of technology rather than solving real scientific problems.

“External data movement at high speeds significantly impacts a supercomputer’s performance,” said Brandon George, systems engineer at DDN Storage. “Our solution addresses that issue by building a self-contained data transfer node with its own high-performance storage that takes in a supercomputer’s results and the responsibility for subsequent data transfers of said results, leaving supercomputer resources free to do their work more efficiently.”

The full experiment ran successfully for 24 hours without interruption and led to a valuable new cosmological data set that Heitmann and other researchers started to analyze on the SC16 show floor.

Argonne senior computer scientist Franck Cappello, who led the effort, likened the software workflow that the team developed to accomplish these goals to an orchestra. In this “orchestra,” Cappello said, the software connects individual sections, or computational resources, to make a richer, more complex sound.

He added that his collaborators hope to improve the performance of the software to make the production and analysis of extreme-scale scientific data more accessible. “The SWIFT workflow environment and the Globus file transfer service were critical technologies to provide the effective and reliable orchestration and the communication performance that were required by the experiment,” Cappello said.

“The idea is to have data centers like we have for the commercial cloud. They will hold scientific data and will allow many more people to access and analyze this data, and develop a better understanding of what they’re investigating,” said Cappello, who also holds an affiliate position at NCSA and serves as director of the international Joint Laboratory on Extreme Scale Computing, based in Illinois. “In this case, the focus was cosmology and the universe. But this approach can aid scientists in other fields in reaching their data just as well.”

Argonne computer scientist Rajkumar Kettimuthu and David Wheeler, lead network engineer at NCSA, were instrumental in establishing the configuration that actually reached this performance. Maxine Brown from University of Illinois provided the Sage environment to display the analysis result at extreme resolution. Justin Wozniak from Argonne developed the whole workflow environment using SWIFT to orchestrate and perform all operations.

The Argonne Leadership Computing Facility, the Oak Ridge Leadership Computing Facility, the Energy Science Network and the National Energy Research Scientific Computing Center are DOE Office of Science User Facilities. Blue Waters is the largest leadership-class supercomputer funded by the National Science Foundation. Part of this work was funded by DOE’s Office of Science.

The National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign provides supercomputing and advanced digital resources for the nation’s science enterprise. At NCSA, University of Illinois faculty, staff, students, and collaborators from around the globe use advanced digital resources to address research grand challenges for the benefit of science and society. NCSA has been advancing one third of the Fortune 50 for more than 30 years by bringing industry, researchers, and students together to solve grand challenges at rapid speed and scale.

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2016, its budget is $7.5 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives more than 48,000 competitive proposals for funding and makes about 12,000 new funding awards. NSF also awards about $626 million in professional and service contracts yearly.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.


Source: Jared Sagoff and Austin Keating, Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This