Argonne to Explore How Digital Twins May Transform Nuclear Energy

July 10, 2020

July 10, 2020 — When designing the next generation of nuclear power plants, the safest way to gauge new tools and technology is to test them on digital models first. Mimicking reactors, these digital twins can be used by companies to explore novel technologies and ways to lower costs or refine designs before breaking ground.

Argonne scientists were awarded $8 million from ARPA-E to partner with startup companies and help develop new types of advanced reactors with digital twin technology. From left to right: Emily Shemon, Rui Hu, and Temitope Taiwo. Image courtesy of Argonne National Laboratory.

The U.S. Department of Energy’s (DOE) Argonne National Laboratory recently obtained $8 million from DOE’s Advanced Research Projects Agency-Energy (ARPA-E) to research these possibilities. With this new funding, Argonne engineers will partner with companies to design digital twins and develop other tools and technology to run the advanced reactors of tomorrow.

The funding comes from ARPA-E’s Generating Electricity Managed by Intelligent Nuclear Assets (GEMINA) program. Nuclear engineers at Argonne are involved in four of the nine projects funded by the GEMINA program this year, receiving almost one-third of its $28 million awarded nationwide.

Looking to twins to automate, reduce costs

Named after the constellation Gemini, known as the twins, the GEMINA program is designed to fund technology that might drastically reduce costs of operating and maintaining next-generation nuclear power plants.

The four projects at Argonne funded by the GEMINA program are:

  • Automated Power Plants: Intelligent, Efficient, and Digitized (SSR APPLIED)
  • Maintenance of Advanced Reactor Sensors and Components (MARS)
  • Secure Automation for Advanced Reactor Innovation (SAFARI)
  • Digital Twin-Based Asset Performance and Reliability Diagnosis for the High Temperature Gas-cooled (HTGR) Reactor Cavity Cooling System Using Metroscope

On each of these projects, engineers will work with an industry partner, harnessing Argonne’s nuclear expertise to solve real-world problems in the U.S. energy industry. Several of Argonne’s collaborators are developing new types of advanced reactors that will be the first of their kind.

These public-private partnerships benefit everyone involved. They help advance the science of next-generation power plants, provide industry with access to world-class research and development, and ultimately, reduce the cost of generating nuclear power.

ARPA-E brings the national laboratories, universities and industry together to help nuclear startups to investigate high-risk R&D problems, which they may not have the resources to work on themselves,” said Alexander Heifetz, a principal engineer at Argonne. ​Our goal with the GEMINA projects is to drastically reduce the costs of operation and maintenance of advanced reactors to make nuclear power more competitive with fossil fuel forms of generating electricity.”

Argonne’s largest GEMINA grant ($4.5 million) is for SSR APPLIED. Engineers on this project will collaborate with Moltex Energy to dramatically reduce the costs of producing nuclear energy for Moltex’s Stable Salt Reactor — Wasteburner (SSR-W), a design for an advanced nuclear plant that would run on nuclear waste.

To do this, Argonne engineers are building a digital twin of the SSR-W reactor, as well as an instrumented molten salt loop, to study how the system behaves in real life. The salt loop, which leverages Argonne’s longstanding experience in molten salt technology, will help the multidisciplinary team improve the mechanics of the digital twin, so the team can use it to simulate operations and maintenance strategies at an SSR-W in real-time. Their goal is to cut costs of operating the SSR-W facility from approximately $11 per megawatt hour (MWh) to less than $2 per MWh.

It’s a real privilege to have this opportunity to work with these collaborators from industry who have been seeking to utilize Argonne’s expertise, facilities and simulation capabilities for advanced reactor R&D,” said Bo Feng, manager of the Reactor and Fuel Cycle Analysis group who leads the SSR APPLIED project at Argonne. ​Being able to contribute in any way to the deployment of nuclear reactors, which generate electricity with zero carbon emissions, will be one of my proudest career achievements.”

As a partnership with Kairos Power, the MARS project aims to reduce the operating and management costs of Kairos’ nuclear reactor design through advanced sensing and instrumentation. With $2.2 million in GEMINA funding, Argonne scientists will develop new sensors that can handle the high temperatures and chemical environment of Kairos’ fluoride salt-cooled reactor. They will also develop algorithms using machine learning to analyze sensor data, helping to automate reactor monitoring.

We’re trying to make the new reactors as inexpensive and safe as possible,” said Nathaniel Hoyt, manager of the  Process Simulation and Safeguards group at Argonne. ​Through advanced sensors and automation, we can reduce the amount of money it takes to operate and monitor nuclear reactors.”

On the SAFARI project, Argonne engineers are also working with Kairos Power, developing the technology to automate advanced reactors using artificial intelligence and machine learning. With their $1.3 million in GEMINA funding, they will build a scalable digital twin along with digital tools to automate maintenance, operations and monitoring of advanced reactor power plants.

Our objective is to develop the technology that will enable semi-autonomous operation of these reactors, so that staffing levels are reduced and plant economics are improved,” said Roberto Ponciroli of the Plant Analysis and Control department at Argonne, one of the principal investigators on the SAFARI project. ​Underlying all of this automation are artificial intelligence and machine learning, which open up new possibilities for remote monitoring, control and operation of the reactor.”

The tools developed at Argonne for the SAFARI project will be tested at a molten salt loop operated by their project partners at the University of Michigan. Scientists will also apply SAFARI tools to Kairos’ fluoride salt-cooled high-temperature reactor design. This step will show the team how the proposed capability can be used to optimize plant design.

Argonne is also helping Framatome, a developer of nuclear technologies, by designing a passive cooling system for the firm’s digital twins. Led by nuclear scientist Darius Lisowski, the project will simulate how air and water naturally circulate to cool a reactor using data from Argonne’s Natural Convection Shutdown Heat Removal Test Facility (NSTF).

Using this data to develop Framatome’s digital twins will greatly improve their reliability and maturity. Framatome will use the digital twins to compare the passive cooling system with a typical cooling circuit. Ultimately, the research aims to identify the superior cooling system for their reactor, ensuring that their next-generation reactors deliver safe, carbon-free electricity.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

About The U.S. Department of Energy’s Office of Science

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://​ener​gy​.gov/​s​c​ience.


Source: Liz Thompson, Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community and their demand for high compute power in low precision for Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implement a neural network (NN). Their novel architecture, reporte Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing the pinnacle of HPE's HPC portfolio. After announcing its i Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the increasingly important goals of data best practices and work Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated, analysts said the acquisition would cement Nvidia’s stat Read more…

By George Leopold

AWS Solution Channel

AWS announces the release of AWS ParallelCluster 2.8.0

AWS ParallelCluster is a fully supported and maintained open source cluster management tool that makes it easy for scientists, researchers, and IT administrators to deploy and manage High Performance Computing (HPC) clusters in the AWS cloud. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Summer Reading: Here’s a Quantum Advantage You Can Bet On!

August 3, 2020

While quantum computing researchers today vigorously chase a demonstration of a quantum advantage – an application which when run on a quantum computer provides sufficient advantage to warrant switching from a classica Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

PEARC20 Plenary Introduces Five Upcoming NSF-Funded HPC Systems

July 30, 2020

Five new HPC systems—three National Science Foundation-funded “Capacity” systems and two “Innovative Prototype/Testbed” systems—will be coming onlin Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Dominates Latest MLPerf Training Benchmark Results

July 29, 2020

MLPerf.org released its third round of training benchmark (v0.7) results today and Nvidia again dominated, claiming 16 new records. Meanwhile, Google provided e Read more…

By John Russell

$39 Billion Worldwide HPC Market Faces 3.7% COVID-related Drop in 2020

July 29, 2020

Global HPC market revenue reached $39 billion in 2019, growing a healthy 8.2 percent over 2018, according to the latest analysis from Intersect360 Research. A 3 Read more…

By Tiffany Trader

Agenting Change: PEARC20 Keynote Encourages Cultural Change to Make Tech Better, More Diverse

July 29, 2020

The tech world will need to become more diverse if it is to thrive and survive, said Cherri Pancake, director of the Northwest Alliance for Computational Resear Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This