Argonne Training Program: Leaning into the Supercomputing Learning Curve

October 9, 2017

Oct. 9, 2017 — What would you do with a supercomputer that is at least 50 times faster than today’s fastest machines? For scientists and engineers, the emerging age of exascale computing opens a universe of possibilities to simulate experiments and analyze reams of data — potentially enabling, for example, models of atomic structures that lead to cures for disease.

But first, scientists need to learn how to seize this opportunity, which is the mission of the Argonne Training Program on Extreme-Scale Computing (ATPESC). The training is part of the Exascale Computing Project, a collaborative effort of the U.S. Department of Energy’s (DOE) Office of Science and its National Nuclear Security Administration.

Starting in late July, 70 participants — graduate students, computational scientists, and postdoctoral and early-career researchers — gathered at the Q Center in St. Charles, Illinois, for the program’s fifth annual training session. This two-week course is designed to teach scientists key skills and tools and the most effective ways to use leading-edge supercomputers to further their research aims.

Recently, 70 scientists — graduate students, computational scientists, and postdoctoral and early-career researchers — attended the fifth annual Argonne Training Program on Extreme-Scale Computing (ATPESC) in St. Charles, Illinois. Over two weeks, they learned how to seize opportunities offered by the world’s fastest supercomputers. (Image by Argonne National Laboratory.)

This year’s ATPESC agenda once again was packed with technical lectures, hands-on exercises and dinner talks.

“Supercomputers are extremely powerful research tools for a wide range of science domains,” said ATPESC program director Marta García, a computational scientist at the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science User Facility at the department’s Argonne National Laboratory.

“But using them efficiently requires a unique skill set. With ATPESC, we aim to touch on all of the key skills and approaches a researcher needs to take advantage of the world’s most powerful computing systems.”

To address all angles of high-performance computing, the training focuses on programming methodologies that are effective across a variety of supercomputers — and that are expected to apply to exascale systems. Renowned scientists, high-performance computing experts and other leaders in the field served as lecturers and guided the hands-on sessions.

This year, experts covered:

  • Hardware architectures
  • Programming models and languages
  • Data-intensive computing, input/output (I/O) and machine learning
  • Numerical algorithms and software for extreme-scale science
  • Performance tools and debuggers
  • Software productivity
  • Visualization and data analysis

In addition, attendees tapped hundreds of thousands of cores of computing power on some of today’s most powerful supercomputing resources, including the ALCF’s Mira, Cetus, Vesta, Cooley and Theta systems; the Oak Ridge Leadership Computing Facility’s Titan system; and the National Energy Research Scientific Computing Center’s Cori and Edison systems – all DOE Office of Science User Facilities.

“I was looking at how best to optimize what I’m currently using on these new architectures and also figure out where things are going,” said Justin Walker, a Ph.D. student in the University of Wisconsin-Madison’s Physics Department. “ATPESC delivers on instructing us on a lot of things.”

Shikhar Kumar, Ph.D. candidate in nuclear science and engineering at the Massachusetts Institute of Technology, elaborates: “On the issue of I/O, data processing, data visualization and performance tools, there isn’t a single option that is regarded as the ‘industry standard.’ Instead, we learned about many of the alternatives, which encourages learning high-performance computing from the ground up.”

“You can’t get this material out of a textbook,” said Eric Nielsen, a research scientist at NASA’s Langley Research Center. Added Johann Dahm of IBM Research, “I haven’t had this material presented to me in this sort of way ever.”

Jonathan Hoy, a Ph.D. student at the University of Southern California, pointed to the larger, “ripple effect” role of this type of gathering: “It is good to have all these people sit down together. In a way, we’re setting standards here.”

Lisa Goodenough, a postdoctoral researcher in high energy physics at Argonne, said: “The theme has been about barriers coming down.” Goodenough referred to both barriers to entry and training barriers hindering scientists from realizing scientific objectives.

“The program was of huge benefit for my postdoctoral researcher,” said Roseanna Zia, assistant professor of chemical engineering at Stanford University. “Without the financial assistance, it would have been out of my reach,” she said, highlighting the covered tuition fees, domestic airfare, meals and lodging.

Now, anyone can learn from the program’s broad curriculum, including the slides and videos of the lectures from some of the world’s foremost experts in extreme-scale computing, online — underscoring program organizers’ efforts to extend its reach beyond the classroom. The slides and the videos of the lectures captured at ATPESC 2017 are now available online at: http://extremecomputingtraining.anl.gov/2017-slides and http://extremecomputingtraining.anl.gov/2017-videos, respectively.

For more information on ATPESC, including on applying for selection to attend next year’s program, visit http://extremecomputingtraining.anl.gov.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications and hardware technology, to support the nation’s exascale computing imperative.

Established by Congress in 2000, the National Nuclear Security Administration (NNSA) is a semi-autonomous agency within the U.S. Department of Energy responsible for enhancing national security through the military application of nuclear science. NNSA maintains and enhances the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear explosive testing; works to reduce the global danger from weapons of mass destruction; provides the U.S. Navy with safe and effective nuclear propulsion; and responds to nuclear and radiological emergencies in the U.S. and abroad. Visit nnsa.energy.gov for more information.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.


Source: Andrea Manning, Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently king of accelerated computing) wins again, sweeping all nine Read more…

Highlights from GlobusWorld 2024: The Conference for Reimagining Research IT

June 11, 2024

The Globus user conference, now in its 22nd year, brought together over 180 researchers, system administrators, developers, and IT leaders from 55 top research computing centers, national labs, federal agencies, and univ Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst firm TechInsights. Nvidia's GPU shipments in 2023 grew by more Read more…

Weekly Wire Roundup: June 2-June 7, 2024

June 8, 2024

Computex (and Jensen Huang) gave us an extra day of news this week, compensating for last week's shorter, holiday-driven news cycle. On Sunday ahead of the official start of Computex, Nvidia's CEO Jensen Huang deliver Read more…

ASC24 Expert Perspective: Dongarra, Hoefler, Yong Lin

June 7, 2024

One of the great things about being at an ASC (Asia Supercomputer Community) cluster competition is getting the chance to interview various industry experts and learning more about the various challenges the students are Read more…

HPC and Climate: Coastal Hurricanes Around the World Are Intensifying Faster

June 6, 2024

Hurricanes are among the world's most destructive natural hazards. Their environment shapes their ability to deliver damage; conditions like warm ocean waters, guiding winds, and atmospheric moisture can all dictate stor Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

Highlights from GlobusWorld 2024: The Conference for Reimagining Research IT

June 11, 2024

The Globus user conference, now in its 22nd year, brought together over 180 researchers, system administrators, developers, and IT leaders from 55 top research Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

ASC24 Expert Perspective: Dongarra, Hoefler, Yong Lin

June 7, 2024

One of the great things about being at an ASC (Asia Supercomputer Community) cluster competition is getting the chance to interview various industry experts and Read more…

HPC and Climate: Coastal Hurricanes Around the World Are Intensifying Faster

June 6, 2024

Hurricanes are among the world's most destructive natural hazards. Their environment shapes their ability to deliver damage; conditions like warm ocean waters, Read more…

ASC24: The Battle, The Apps, and The Competitors

June 5, 2024

The ASC24 (Asia Supercomputer Community) Student Cluster Competition was one for the ages. More than 350 university teams worked for months in the preliminary competition to earn one of the 25 final competition slots. The winning teams... Read more…

Computex 2024: Nvidia, AMD Push GPUs; Intel Revs Up x86 Power Efficiency

June 5, 2024

"The days of millions of GPU data centers are coming," said Nvidia CEO Jensen Huang during a keynote at Computex. Huang's predictions are becoming bolder and bo Read more…

Using AI and Robots to Advance Science

June 4, 2024

Even though we invented it, humans can be pretty bad at science. We need to eat and sleep, we sometimes let our emotions regulate our behavior, and our bodies a Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire