Argonne Training Program Prepares Researchers for Scientific Computing in the Exascale Era

October 17, 2019

Oct. 17, 2019 — Petro Junior Milan tears his eyes from his laptop and flexes his fingers, giving them a few seconds’ reprieve from his nearly 11 days of nonstop typing at the 2019 Argonne Training Program on Extreme-Scale Computing (ATPESC), an annual event organized by the U.S. Department of Energy’s (DOE) Argonne National Laboratory and funded by DOE’s Exascale Computing Project (ECP).

Around him, fellow ATPESC participants are also rapidly typing, attempting to capture everything Sameer Shende, director of the Performance Research Laboratory at the University of Oregon and the president and director of ParaTools, Inc., is sharing about performance analysis tools for scientific applications on large-scale supercomputers.

One month earlier, Milan was in his office at Georgia Tech struggling with an intractable problem: improving the parallelized, multi-physics code for his simulations of turbulent reacting flows in liquid rocket engines. Now, Shende’s lectures — on tracing tools to analyze the behavior and time complexity of parallel programs — are providing some insight that might help Milan solve his problem. After the lecture, the two discussed options for improving Milan’s simulations.

Like Milan, many computer scientists and graduate students require more in-depth training and hands-on experience with high-performance computing (HPC) tools needed to advance science in the emerging exascale era. ATPESC, now in its seventh year, plays an important role in growing the community of researchers who can use supercomputers to tackle complex problems in science and engineering. The annual training event, which was held at the Q Center in St. Charles, Illinois, this summer, has now hosted nearly 500 participants since its inception.

With support from the ECPATPESC is structured to dovetail with the nation’s efforts to develop a capable computing ecosystem for future exascale supercomputers, including Aurora at the Argonne Leadership Computing Facility (ALCF) and Frontier at the Oak Ridge Leadership Computing Facility (OLCF), both DOE Office of Science User Facilities.

Lasting two weeks, the training program provides participants with invaluable HPC skills and tools that they can later apply to their home institutions and research projects. While the days are long — beginning at 8:30 a.m. and often extending to 9:30 p.m. — they are packed with expert lectures, hands-on HPC coding sessions and nightly dinner talks.

After attending ATPESC for a week, Kristofer Zieb, a postdoctoral researcher at Lawrence Livermore National Laboratory (LLNL), said, ​I feel like I went through grad school all over again.” The tightly condensed, lecture-filled days may be rigorous, but the results of ATPESC show. ​When I get back to the lab, I will definitely be a more competent and contributing member of the HPC community,” Zieb said.

The transformation that the ATPESC participants experience over the two weeks of the training program is remarkable,” said ATPESC program director Marta García, a computational scientist at Argonne. ​This is an intensive, once-in-a-lifetime experience that impacts their careers and helps them better prepare for complex hardware and software ecosystems.”

This year, Argonne welcomed 73 participants, comprising graduate students, postdoctoral researchers, professors and early-career scientists.  ATPESC’s 66 lecturers included renowned scientists, HPC experts and other field leaders. Extending from July 28 to Aug. 9, the program curriculum covered the following tracks:

  • Hardware Architectures
  • Programming Models and Languages
  • Data-intensive Computing and Input/Output (I/O)
  • Visualization and Data Analysis
  • Numerical Algorithms and Software for Extreme-Scale Science
  • Performance Tools and Debuggers
  • Software Productivity
  • Machine Learning and Deep Learning for Science (added in 2019)

Each track session featured detailed lectures that culminated in a hands-on HPC coding exercise during which participants were encouraged to use their own codes.

The participants also toured the Argonne campus, exploring the Laboratory’s highly advanced technology and research facilities, including the Advanced Photon Source (APS), ALCF, Argonne Tandem Linear Accelerator System (ATLAS) and Nuclear Energy Exhibition Hall. Like the ALCF, the APS and ATLAS are DOE Office of Science User Facilities.

In addition to the tour, the participants utilized hundreds of thousands of cores of computing power from the ALCF’s Mira and Theta systems, as well as the OLCF’s Summit system and the National Energy Research Scientific Computing Center’s (NERSC) Cori system (also a DOE Office of Science User Facility).

ATPESC is an intensive, hands-on, extraordinary training program, providing a unique perspective on extreme-scale computing,” said Rosangela Follmann, a visiting professor in the School of Information and Technology at Illinois State University. In the fall, she will be teaching a parallel computing class in which she will apply what she learned at ATPESC.

Most people are not exposed to the breadth of HPC tools and topics in their degree programs,” added Cyrus Harrison, an LLNL scientist who lectured on visualization and data analysis. According to Harrison, ATPESC is valuable and successful, bringing together vast knowledge for the HPC discipline.

Daniel Barry, a Ph.D. student in Data Science and Engineering at the University of Tennessee, Knoxville, agreed, ​ATPESC is an absolutely fantastic opportunity for anyone who wants to refine their skills or learn certain areas of HPC more thoroughly.”

Before attending ATPESC, Barry tried to learn more about software tools for supercomputing via online documentation, but this approach was not as productive as the ATPESC experience. ​A lot of explanations I’ve seen online are missing the crucial details that make a difference in understanding the nuanced scenarios that occur in the codes for high-performance computational workloads. ATPESC has been designed in such a way that is easy to understand and program effectively in these scenarios.”

Even the lecturers gained from their student interactions. ​It’s a lot of fun for the whole track team to interact with the attendees,” said Argonne senior computational scientist Lois Curfman McInnes, who coordinates the track on numerical algorithms and software for extreme-scale science. ​I enjoyed learning about the experiences and interests of the attendees and how their new directions can impact our research.”

Although the event has limited space, ATPESC’s broad curriculum is available to the public. Each year since its inception, the program has posted lecture slides and videos online. Videos of the 2019 lectures will be available soon. To learn more about the program, visit the ATPESC website.

ATPESC program director García concluded, ​What I admire most in the participants every year is their passion, hard work, open-mindedness, creative thinking and dedication to improve their codes and their disciplines ― and to take what they learn and improve our society. On behalf of the 100 volunteers who are involved in the preparation for ATPESC, we wanted to say: Thank you for believing in this program and in its benefit to the scientific community worldwide.”

About The Exascale Computing Project 

The Exascale Computing Project is a collaborative effort of two DOE organizations — the Office of Science and the National Nuclear Security Administration. ECP was established to develop a capable exascale ecosystem, encompassing applications, system software, hardware technologies and architectures and workforce development to meet the scientific and national security mission needs of DOE in the mid-2020s timeframe.

Established by Congress in 2000, the National Nuclear Security Administration (NNSA) is a semi-autonomous agency within the U.S. Department of Energy responsible for enhancing national security through the military application of nuclear science. NNSA maintains and enhances the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear explosive testing; works to reduce the global danger from weapons of mass destruction; provides the U.S. Navy with safe and effective nuclear propulsion; and responds to nuclear and radiological emergencies in the U.S. and abroad. Visit nnsa​.ener​gy​.gov for more information.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

About The U.S. Department of Energy’s Office of Science 

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science


Source: Victoria Martin, Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE and NREL Collaborate on AI Ops to Accelerate Exascale Efficiency and Resilience

November 18, 2019

The ever-expanding complexity of high-performance computing continues to elevate the concerns posed by massive energy consumption and increasing points of failure. Now, the AI Ops collaboration between Hewlett Packard En Read more…

By Oliver Peckham

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Read more…

By Doug Black

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft the first large public cloud vendor to offer the IPU designe Read more…

By George Leopold

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

HPE and NREL Collaborate on AI Ops to Accelerate Exascale Efficiency and Resilience

November 18, 2019

The ever-expanding complexity of high-performance computing continues to elevate the concerns posed by massive energy consumption and increasing points of failu Read more…

By Oliver Peckham

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This