Argonne’s Researchers and Facilities Playing a Key Role in the Fight Against COVID-19

March 30, 2020

March 30, 2020 — In the Manhattan Project of the early 1940s, a group of scientists from all over the world raced against time to save society. Today, every moment counts in a similarly important scientific effort: the fight against the pandemic of the novel coronavirus disease, COVID-19, that is sweeping the world and that represents one of the greatest challenges of our lifetimes. Scientists are working around the clock to analyze the virus to find new treatments and cures, predict how it will propagate through the population, and make sure that our supply chains remain intact.

The U.S. Department of Energy’s (DOE) Argonne National Laboratory is playing a key role in all of these activities, bringing the power of its scientific leadership and state-of-the-art user facilities to bear in the global battle against COVID-19. By partnering with other laboratories and research institutions around the world to attack the virus on every front, Argonne is doing its part to save lives and protect U.S. prosperity and security.

No inhibitions in the search for an inhibitor

The key to defeating COVID-19 is finding what truly is a biochemical key — an inhibitor molecule that will sit just right in the nooks and crannies of one or more of the 28 viral proteins that make up SARS-CoV-2, the virus that causes COVID-19. Discovering which keys have a chance of working requires a technique called macromolecular X-ray crystallography, in which tiny crystals of either pure protein or protein and inhibitors are grown and then illuminated by a high-brightness, high-energy X-ray beam.

These X-ray beams are unlike anything available at a doctor’s office and exist only at a few specialized sites around the world. Argonne’s Advanced Photon Source (APS), a DOE Office of Science User Facility, is one of them.

By mid-March, researchers from around the country had used APS beamlines to characterize roughly a dozen proteins from SARS-CoV-2, several of them with inhibitors.

“The fortunate thing is that we have a bit of a head start,” said Bob Fischetti, life sciences advisor to the APS director. ​“This virus is similar but not identical to the SARS outbreak in 2002, and 70 structures of proteins from several different coronaviruses had been acquired using data from APS beamlines prior to the recent outbreak. Researchers have background information on how to express, purify and crystallize these proteins, which makes the structures come more quickly — right now about a few a week.”

One of the research teams performing work on SARS-CoV-2 includes members of the Center for Structural Genomics of Infectious Diseases (CSGID), which is funded by NIH’s National Institute of Allergy and Infectious Diseases (NIAID). The team is led by Karla Satchell from Northwestern University and Andrzej Joachimiak of Argonne and the University of Chicago. Other members involved in the work include Andrew Mesecar from Purdue University and Adam Godzik from the University of California, Riverside. They have used APS beamlines 19-ID-D, operated by the Argonne Structural Biology Center, supported by the DOE Office of Science, and 21-ID, operated by the Life Sciences Collaborative Access Team, a multi-institution consortium supported by supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor.

Another group, led by M. Gordon Joyce at the Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF) at the Walter Reed Army Institute of Research (WRAIR) is studying antibody and antiviral compounds. They are using beamline 24-ID, which is operated by the Northeastern Collaborative Access Team, which is managed by Cornell University and seven member institutions.

According to Fischetti, the breakneck pace of collaborative science with one common essential goal is unlike anything else he has seen in his career. ​“Everything is just moving so incredibly fast, and there are so many moving pieces that it’s hard to keep up with,” he said.

Fischetti compared finding the right inhibitor for a protein to discovering a perfectly sized and shaped Lego brick that would snap perfectly into place. ​“These viral proteins are like big sticky balls — we call them globular proteins,” he said. ​“But they have pockets or crevices inside of them where inhibitors might bind.”

By using the X-rays provided by the APS, scientists can gain an atomic-level view of the recesses of a viral protein and see which possible inhibitors — either pre-existing or yet to be developed — might reside best in the pockets of different proteins.

The difficulty with pre-existing inhibitors is that they tend to bind with only a ​“micromolar” affinity, which would require extremely high doses that could cause complications. According to Fischetti, the research teams are looking for an inhibitor that would have a nanomolar affinity, enabling it to be administered as a drug that would have many fewer or no side effects.

“This situation makes clear the importance of science in solving critical problems facing our world,” said APS Director Stephen Streiffer. ​“X-ray light sources, including the APS, our sister DOE facilities, and the light sources around the world, plus the researchers who use them are fully engaged in tackling this dire threat.”

Computing the COVID-19 crisis

Argonne researchers are using the Theta supercomputer to model potential drug candidates that could serve as antivirals against COVID-19. (Image by Argonne National Laboratory)

Researchers can accelerate a significant part of inhibitor development through the use of supercomputing. Just as light sources from around the world, including the Diamond Light Source in the United Kingdom, have banded together to solve SARS-CoV-2 protein structures, so too have the top supercomputers turned their focus to the challenge at hand.

As part of the COVID-19 High Performance Computing Consortium, recently announced by President Trump, researchers at Argonne are joining forces with researchers from government, academia, and industry in an effort that combines the power of 16 different supercomputing systems.

At Argonne, researchers using the Theta supercomputer at the Argonne Leadership Computing Facility — also a DOE Office of Science User Facility — have linked up with other supercomputers from around the country, including Oak Ridge National Laboratory’s Summit supercomputer, the Comet supercomputer at the University of California-San Diego, and the Stampede2 supercomputer at the Texas Advanced Computing Center. With their combined might, these supercomputers are powering simulations of how billions of different small molecules from drug libraries could interface and bind with different viral protein regions.

“When we’re looking at this virus, we should be aware that it’s not likely just a single protein we’re dealing with — we need to look at all the viral proteins as a whole,” said Arvind Ramanathan, a computational biologist in Argonne’s Data Science and Learning division. ​“By using machine learning and artificial intelligence methods to screen for drugs across multiple target proteins in the virus, we may have a better pathway to an antiviral drug.”

The databases of potential drug candidates available to researchers are truly immense — they include catalogs of small molecules that number in the hundreds of millions to billions. Running individual simulations of each and every drug candidate for each viral protein, even with the supercomputers running 24/7, would take many years — a window of time that scientists don’t have.

To zero in on the most likely candidates as efficiently as possible, computational biologists are using machine learning and artificial intelligence techniques to do a kind of educated filtration of possibilities. Ten billion configurations are quickly whittled down to 250 million poses that the models attempt to fully dock. These 250 million docking poses are then further refined to roughly six million positions that are fully configured for computationally intensive molecular dynamics simulations.

At the end of the day, the ultimate goal of this computational modeling is to identify which inhibitor candidates can be fed back to scientists at the APS to attempt to co-crystalline with viral proteins. ​“It’s an iterative process,” said Rick Stevens, associate laboratory director of Argonne’s Computing, Environment and Life Sciences directorate. ​“They feed structures to us, we feed our models to them — eventually we hope to find something that works well.”

Additionally, researchers are constructing epidemiological models to simulate the spread of COVID-19 through the population. These agent-based models are taking into account on-the-fly reports of the properties of the virus’s virulence that are being published every day in the scientific literature.

The agent-based model that Argonne researchers have developed includes almost 3 million separate agents, each of whom can travel to any of 1.2 million different locations. The actions of each agent are determined by hourly schedules — like a trip to the gym, or going to school.

Currently, the Argonne team is developing a baseline simulation — in essence, to see what would happen to our communities if people carried on with business as usual. But the true goal is to be able to extensively model the various interventions — or possible additional interventions — that decisionmakers can implement in order to slow the virus’s spread.

“Our models simulate individuals in a city interacting with each other,” said Argonne computational scientist Jonathan Ozik, who helps to lead Argonne’s epidemiological modeling research. ​“If there’s a school closure, we see people who are supposed to go to school not go to school, and we can look at population level outcomes, such as how does the school closure affect how many people get exposed to the virus.”

The advantage of having a computer model of an entire city is that it represents an in silico laboratory for decision-makers to see how different decisions might affect a population without actually having to implement them. ​“Knowing what decisions to make on a regional or national scale and when are crucial in this worldwide fight,” said Argonne distinguished fellow Charles (Chick) Macal, who also leads the research. ​“We’re developing a model that will help give information about what decisions will be most effective.”

The team includes Argonne software engineer Nick Collier and computer scientist Justin Wozniak, providing critical expertise in deploying the large-scale computational experiments needed for the effort on DOE leadership computing resources.

For the full article and additional graphics, visit https://www.alcf.anl.gov/news/argonne-s-researchers-and-facilities-playing-key-role-fight-against-covid-19.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

About the U.S. Department of Energy’s Office of Science 

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science


Source: Jared Sagoff, Argonne National Laboratory 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Supercomputers Assist Hunt for Mysterious Axion Particle

January 21, 2021

In the 1970s, scientists theorized the existence of axions: particles born in the hearts of stars that, when exposed to a magnetic field, become light particles, and which may even comprise dark matter. To date, however, Read more…

By Oliver Peckham

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Researchers Train Fluid Dynamics Neural Networks on Supercomputers

January 21, 2021

Fluid dynamics simulations are critical for applications ranging from wind turbine design to aircraft optimization. Running these simulations through direct numerical simulations, however, is computationally costly. Many Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This