Argonne’s User Facilities Continue to Enable Critical Work Combating and Addressing the Impacts of the COVID-19 Epidemic

June 12, 2020

June 12, 2020 — The Advanced Photon Source (APS), a U.S. Department of Energy (DOE) Office of Science User Facility located at the DOE’s Argonne National Laboratory, continues to work with user groups around the country on COVID-19 research. With the laboratory in minimum safe operations mode, that research is being conducted remotely.

As of June 1, a total of 45 different groups have used or are using the APS via remote access for research on the SARS-CoV-2 virus, which causes COVID-19. Those groups have deposited 44 structures of the proteins that make up the virus, some with inhibitors and antibodies, into an international protein databank maintained by scientists from around the world. Members of the Center for Structural Genomics of Infectious Diseases (CSGID) have contributed 30 of the 44 structures. The CSGID is led by Karla Satchell at Northwestern University and Andrzej Joachimiak at Argonne and the University of Chicago.

Aerial view of Argonne National Laboratory. (Image by Argonne National Laboratory.)

According to Robert Fischetti, group leader with Argonne’s X-ray Science division and life sciences advisor to the APS director, the APS has been proactive, contacting more than 15,000 users to let them know that remote access or mail-in research on COVID-19 is ongoing. Proposals for COVID-19 research are being fast-tracked, Fischetti said, but still undergoing review for safety, and to make sure all accepted proposals are actually for work on SARS-CoV-2.

Scientists at the APS do not work with the live virus, but with crystals grown from noninfectious viral proteins. The APS has 68 beamlines and 16 of them are used for protein or macromolecular crystallography. Users apply for time on these beamlines, and once approved and scheduled, they ship crystals for analysis. If users need crystals grown for their research, Argonne’s Structural Biology Center (SBC) team can do that for them as well, according to Joachimiak, director of the Midwest Center for Structural Genomics and the SBC at the APS.

From there, Fischetti said, the process is almost entirely remote. Using a system built and tested over the past 15 years, users can control the APS beamline from any computer remotely, as if they were sitting at the experiment station on site. The crystals are automatically loaded into the beamline, and scans take only a few minutes. Users can determine from afar which crystals they most want to analyze and can get data back from their scans in minutes. A few other beamlines are applying X-ray imaging and small-angle X-ray scattering (SAXS) techniques to study SARS CoV-2 proteins and materials for N95 masks.

Some projects, Joachimiak noted, require further interaction with beamline scientists. Users can mail in their samples for the SBC team to conduct the scans. Mail-in COVID-19 research is currently happening at a few beamlines, Joachimiak said.

Once the scans are complete and data transmitted, it’s up to the user to deposit the completed structures into the protein databank, Fischetti said. While much of the research involves determining the exact shape of the proteins that make up the virus to lay the groundwork for potential treatments, several users are working with antibodies from previous SARS and MERS outbreaks to chart the path toward a vaccine.

Joachimiak also noted the integration of computing and other resources enabling faster and more precise work on COVID-19. He noted that the current effort has progressed as much in two months as the research on the previous SARS epidemic did in four years, and called for even more cooperation and connection moving forward.

“This is direct evidence that we can do this,” he said. ​“There will be other viral outbreaks in the future, and the more we work together the better prepared we will be.”

Another collaboration between the University of Chicago (UChicago) and DOE’s Argonne National Laboratory is turning to artificial intelligence (AI) to extract COVID-19 signatures from medical images.

With a grant from the newly formed C3​.ai Digital Transformation Institute (C3​.ai DTI), the team is developing a clinical tool to aid in the triaging of COVID patients through the use of AI-informed data drawn from lung X-rays and CT scans of former COVID-19 patients. The team is currently focusing on the lungs, where the virus predominantly settles and presents as a respiratory illness.

The AI technique they’re using is called transfer learning, which stores knowledge gained while solving one problem and applies it to a different but related problem.

“Deep learning models trained in detecting and classifying various interstitial diseases from chest X-rays and CTs are then trained on images from COVID-19 subjects to increase the overall accuracy of our models,” said Ravi Madduri, a computational scientist in Argonne’s Data Science and Learning division and a senior scientist with the University of Chicago Consortium for Advanced Science and Engineering.

Madduri is working alongside UChicago computer-aided diagnosis expert and the project’s principal investigator Maryellen Giger to develop the tool as an efficient means to detect, monitor, and treat patients.

“There are multiple parts: the detection and diagnosis, as well as the response to treatment,” Giger said in a recent article in UChicago News. ​“How do we follow the disease? And when do we see a presentation that says ​‘start treatment’? And if they are being treated, how can we follow to determine if the treatment is working? Can we use this to inform decisions and treatment?”

To help answer some of those questions, Madduri will work with Giger’s group in overall data management, viral feature extraction and in leveraging Argonne’s high-performance computing resources, including the Argonne Leadership Computing Facility, another DOE Office of Science User Facility, to scale up the learning and inferencing from the models.

“The most immediate impact of our developments will be an early-stage tool for surveillance and early detection of COVID-19 resurgence via monitoring of lung CT/X-Ray scans,” said Madduri.

C3​.ai DTI was founded by C3​.ai, Microsoft Corporation, the University of Illinois at Urbana-Champaign (UIUC), the University of California, Berkeley, Princeton University, the University of Chicago, the Massachusetts Institute of Technology, Carnegie Mellon University, the National Center for Supercomputing Applications at UIUC, and the DOE’s Lawrence Berkeley National Laboratory.

Finally, in response to growing interest and need for homemade masks to protect the public from COVID-19, University of Chicago and Argonne scientists are using the Center for Nanoscale Materials (CNM), a third DOE Office of Science User Facility, to investigate the effectiveness of various combinations of household materials at filtering aerosol particles ranging from 10 nanometers to six microns in size.

A recent study published in ACS Nano suggests that a combination of high thread-count cotton and natural silk or chiffon can effectively filter aerosol particles of similar sizes to respiratory droplets that spread the virus through coughs, sneezes, and breaths.

The team, led by Supratik Guha, a professor with the University of Chicago’s Pritzker School of Molecular Engineering (PME) and a scientist at Argonne, designed an experimental setup consisting of two plexiglass boxes connected by a tube. The scientists placed different combinations of cloths over the tube, and a fan blew aerosol particles at the fabric samples. The researchers — with help from Argonne environmental safety experts Mike Schmoldt and Greg Moss — determined the percentage and size of particles that made it through to the other side of the fabric through the use of particle analyzers. The research team also included CNM postdoctoral fellows Abhinav Prakash and Abhiteja Konda and PME graduate student Greg Grant.

The results of the study indicate that one layer of tightly woven cotton or flannel, combined with two layers of polyester-based chiffon or natural silk, filtered out between 80 to 90 percent of aerosol particles, depending on particle size. However, this will also significantly reduce the flow of air through the cloth at pressure drops that realistically occur across the fabric of unfitted cloth masks. The path to innovative cloth mask designs is to identify ways of increasing the surface area of the cloth in order to increase flow, while reducing the relative effects of air leakage around the edges of the mask.

Tightly woven fabrics, such as cotton, can act as a mechanical barrier to particles. Fabrics that hold a static electric charge, such as chiffon and silk, stop even the smallest particles using an electrostatic barrier. However, the researchers note that even a small gap between the face and a mask could reduce filtering efficiency by half or more, emphasizing the importance of a properly fitted mask.

About Argonne’s Center for Nanoscale Materials

The Center for Nanoscale Materials is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit https://​sci​ence​.osti​.gov/​U​s​e​r​-​F​a​c​i​l​i​t​i​e​s​/​U​s​e​r​-​F​a​c​i​l​i​t​i​e​s​-​a​t​-​a​-​G​lance.

About The Argonne Leadership Computing Facility

The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines. Supported by the U.S. Department of Energy’s (DOE’s) Office of Science, Advanced Scientific Computing Research (ASCR) program, the ALCF is one of two DOE Leadership Computing Facilities in the nation dedicated to open science.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

About The U.S. Department of Energy’s Office of Science

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science


Source: Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Supercomputers Assist Hunt for Mysterious Axion Particle

January 21, 2021

In the 1970s, scientists theorized the existence of axions: particles born in the hearts of stars that, when exposed to a magnetic field, become light particles, and which may even comprise dark matter. To date, however, Read more…

By Oliver Peckham

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Researchers Train Fluid Dynamics Neural Networks on Supercomputers

January 21, 2021

Fluid dynamics simulations are critical for applications ranging from wind turbine design to aircraft optimization. Running these simulations through direct numerical simulations, however, is computationally costly. Many Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This