Arizona Universities Join Research Computing Fight Against COVID-19

July 16, 2020

July 16, 2020 — The University of Arizona, in partnership with research computing centers at Arizona State University and Northern Arizona University, is contributing research computing resources to a worldwide effort to advance COVID-19 research.

Arizona’s three state universities are participating in the national Folding@home project, which relies on volunteers’ idle computing power to run protein modeling computations that help researchers learn more about how to cure or treat certain diseases.

The university’s three supercomputers are typically used to make complex computations of research data. The computers’ idle time will be used complete computations that will help researchers around the world better understand COVID-19. Image courtesy of University Information Technology Services.

The project, based at Washington University in St. Louis, began in 2000 and focuses on cancer, infectious diseases and neurological diseases. The universities’ advanced supercomputers will be used during their downtime to contribute to the project, which is now largely focused on the COVID-19 pandemic.

The University of Arizona has three supercomputers, each with much more processing power and memory capacity than the standard desktop computer. The three computers are all connected, allowing them to speak to each other very quickly so researchers can do millions of small calculations – such as simulating 12 million galaxies over 400 million years.

Blake Joyce, assistant director of research computing at the University of Arizona, compares the machines to cars: If a desktop computer is a standard sedan, “a supercomputer isn’t one F1 race car; it’s more like having a fleet of cars.”

Folding@home provides its free software to volunteers or citizen scientists to download to their personal computers, allowing simulations of complex scientific processes to run in the background while computers are not in use. The project uses shared computing power at a massive scale to help solve grand challenges in biomedical research.

Researchers request computations via the Folding@home software, which assigns the computing tasks to computing providers. The computing providers send the results back through the software.

A number of NAU researchers are using the university’s supercomputer, Monsoon, to study COVID-19. Monsoon administrator Christopher Coffey said this additional approach offered an efficient way to use NAU’s high-performance computing capacity to the fullest. It’s also a natural partnership among the three public universities.

“For six years, we have collaborated on research computing projects whenever possible to help advance research in Arizona,” Coffey said. “This project combines the computing power at each of the universities to take on COVID-19 together and is another way NAU researchers are collaborating with our colleagues to help lead this fight.”

What is Folding?

The project seeks to understand how proteins – large, complex molecules that play an important role in how our bodies operate – “fold” to perform their biological functions. This helps researchers understand diseases that result from protein “misfolding” and identify novel ways to develop new drug therapies.

How proteins fold or misfold can help researchers understand what causes diseases like cancer, Alzheimer’s disease and diabetes. It might also provide insight into diseases such as COVID-19.

“Imagine if I told 100 people to fold a pipe cleaner,” said Joyce, who has a background in ecology, biology, genetics and bioinformatics. “They are going to fold it in 100 different ways because there’s an infinite number of combinations of how to take something that is straight and fold it. That’s what viruses and living things do with proteins. They make copies of themselves and fold them up in their own particular way.”

Using computational modeling, researchers can explore the mechanics of proteins of the virus and predict every possible way it might fold or physically change shape.

“In biology, shape is function,” Joyce said. “If you can disrupt that shape, the virus is inactive or can’t do its thing. If you disrupt any of the mechanisms that can damage us, you have a cure, or at least something you can treat. And that is what we’re after. It just takes a lot of computing to come up with every possible way to bend a pipe cleaner.”

By running computer simulations, researchers can see how the virus would interact with various compounds or drugs and narrow down which ones might work to interrupt one of the critical mechanisms the virus needs to survive.

Folding@home assigns pieces of a protein simulation to each computer and the results are returned to create an overall simulation. Folding@home computations for COVID-19 research seem to be most productive on the kind of computers found in facilities like Arizona’s research computing centers, making their contributions especially valuable.

Arizona’s Early Impact

Volunteers can track their contributions on the Folding@home website and combine their efforts as a team, receiving points for completing work assigned to them and even earn bonus points for work that is more computationally demanding or that might have a greater scientific priority. The point system helps Folding@home determine which machines in the project are quick and reliable.

The Arizona Research Computing team – which includes supercomputers across the three state universities – has risen quickly in the ranks, highlighting the universities’ powerful computing capabilities and the effectiveness of regional collaborations. As of early July, the team was ranked in the top 60 of nearly 250,000 teams, surpassing other teams that include Hewlett Packard, Cisco Systems, Apple and Google, as well as many other universities, industry and national or international contributors.

“Our systems really jumped up in points because we can process analyses reliably and quickly,” Joyce said.

The Folding@home project “investigates many research questions that require an enormous amount of computing, but this specific use for COVID-19 provides a unique opportunity, spurring many computing centers to participate in Folding@home for the first time,” says Gil Speyer, lead scientific software engineer for Arizona State University’s Research Computing center.


Source: University of Arizona

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire