ASU Researchers Lead DARPA Effort to Design the Computational Architecture of the Future

July 25, 2018

TEMPE, Ariz., July 25, 2018 — An Arizona State University research team seeks to create a new framework for designing and building advanced computing platforms that will circumvent the power constraints that exist in a growing range of technologies.

Under the new Electronics Resurgence Initiative (ERI) research program, improved processing capabilities will enable sophisticated applications to operate more effectively in technologies like those that control unmanned aerial vehicles and the internet of things, as well as consumer electronics such as cell phones, cameras and health monitoring devices.

ERI is a multi-year program administered by the U.S. Department of Defense’s Defense Advanced Research Projects Agency (DARPA).

Aspirations to achieve broader technological capabilities are constrained by the limits of current computing technologies, says Daniel Bliss, an associate professor of electrical, computer and energy engineering at ASU.

“I am always computation hungry. I’m interested in taking steps forward on a lot of advanced communications, radar and medical systems, but I never have the computational ability I need,” says Bliss, a systems engineer.

Bliss is leading the Domain-Focused Advanced Software-Reconfiguration Heterogeneous (DASH) portion of the Domain-Specific System on Chip (DSSoC) program, one of one of many research efforts under ERI. The project aligns precisely with the aims of ASU’s Center for Wireless Information Systems and Computational Architectures (WISCA), which Bliss directs.

The assignment is to build a new framework to push development of the next generation of high-performance, embedded, heterogeneous computer processors that are more capable, more power efficient and easier to use, according to Bliss.

The initiative’s directives “are all about exactly what we want to do,” Bliss says. “The bottom line is to help satisfy that hunger for greater computational power that is required by sophisticated signal processing applications.”

Heterogeneous processing boosts performance and energy efficiency on a single, integrated circuit by using multiple types of processors with specialized capabilities to perform specific computing tasks. Because heterogeneous processors are notoriously difficult to program, the WISCA team’s objective is to provide software tools and on-chip intelligence to dramatically simplify implementation.

A key part of DARPA’s objective is to engage the electronics industry and commercial enterprises in the ERI research projects. So Bliss and his ASU team will be working not only with fellow researchers at Carnegie Mellon University, the University of Arizona and the University of Michigan, but also with Arm Limited, EpiSys Sciences Inc., and General Dynamics Mission Systems.

“We are going to go all the way from providing ideas for making it easier to figure out how this new kind of chip should be assembled to providing the software to help put it together,” Bliss explains. “Then we will give you the software and analysis tools to help you program these chips to run multiple applications, including some tools that run in real-time inside the chip,” he adds.

Moreover, the team hopes to embed intelligent and machine learning functionality into the chips.

“This enables the chip itself to learn, based on how it is being used, so that it can operate more efficiently in the way it is running various applications,” Bliss says.

Beyond those enhanced capabilities, processors using these chips will be capable of running extensive, sophisticated computations with significantly less power – reducing operations that now take hundreds of watts of electrical power to only several watts.

Other research teams working under ERI are integrating different materials into computer processors, enhancing the underlying physics involved in processing and developing novel microelectronics designs and potential new applications. These efforts combined could alter the paradigms of how computer processing is done or even fundamentally change the technology used to do processing, Bliss says.

Unmanned autonomous systems are among the newer technologies that rely heavily on signal processing. But they present a challenge, Bliss says, because “they have limited energy availability, which limits capabilities given current computational systems.”

In addition, the ASU team plans to develop tools that design and use heterogeneous computing processors for signal processing applications, which will improve high-performance communications, sensing and radar technologies, as well as biomedical and health assessment devices.

“It will affect the technology that lives in cell phones, in your smartwatch, in your camera, the information systems in your car,” Bliss says, “and it could make all of this tech less expensive, more energy efficient and more powerful.

“What should come out of this are better processors for all kinds of things we use in our everyday lives.”

About Arizona State University

Arizona State University has developed a new model for the American Research University, creating an institution that is committed to access, excellence and impact. ASU measures itself by those it includes, not by those it excludes. As the prototype for a New American University, ASU pursues research that contributes to the public good, and ASU assumes major responsibility for the economic, social and cultural vitality of the communities that surround it.


Source: Arizona State University

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire