Atos Announces Q-Score Metrics for Assessing Quantum Performance and Superiority

December 4, 2020

PARIS, Dec. 4, 2020 — Atos introduces “Q-score”, the first universal quantum metrics, applicable to all programmable quantum processors. Atos’ Q-score measures a quantum system’s effectiveness at handling real-life problems, those which cannot be solved by traditional computers, rather than simply measuring its theoretical performance. Q-score reaffirms Atos’ commitment to deliver early and concrete benefits of quantum computing. Over the past five years, Atos has become a pioneer in quantum applications through its participation in industrial and academic partnerships and funded projects, working hand-in-hand with industrials to develop use-cases which will be able to be accelerated by quantum computing.

“Faced with the emergence of a myriad of processor technologies and programming approaches, organizations looking to invest in quantum computing need a reliable metrics to help them choose the most efficient path for them. Being hardware-agnostic, Q-score is an objective, simple and fair metrics which they can rely on,” said Elie Girard, Atos CEO. “Since the launch of ‘Atos Quantum’ in 2016, the first quantum computing industry program in Europe, our aim has remained the same: advance the development of industry and research applications, and pave the way to quantum superiority.”

What does Q-score measure?

Today the number of qubits (quantum units) is the most common figure of merit for assessing the performance of a quantum system. However, qubits are volatile and vastly vary in quality (speed, stability, connectivity, etc.) from one quantum technology to another (such as supraconducting, trapped ions, silicon and photonics), making it an imperfect benchmark tool. By focusing on the ability to solve well-known combinatorial optimization problems, Atos Q-score will provide research centers, universities, businesses and technological leaders with explicit, reliable, objective and comparable results when solving real-world optimization problems.

Q-score measures the actual performance of quantum processors when solving an optimization problem, representative of the near-term quantum computing era (NISQ – Noisy Intermediate Scale Quantum). To provide a frame of reference for comparing performance scores and maintain uniformity, Q-score relies on a standard combinatorial optimization problem, the same for all assessments (the Max-Cut Problem, similar to the well-known TSP – Travelling Salesman Problem, see below). The score is calculated based on the maximum number of variables within such a problem that a quantum technology can optimize (ex: 23 variables = 23 Q-score or Qs).

Atos will organize the publication of a yearly list of the most powerful quantum processors in the world based on Q-score. Due in 2021, the first report will include actual self-assessments provided by manufacturers.

Based on an open access software package, Q-score is built on 3 pillars:

  • Application driven: Q-score is the only metrics system based on near-term available quantum algorithms and measures a quantum system’s capacity to solve practical operational problems;
  • Openness and ease of use: Universal and free, Q-score benefits from Atos’ technology-neutral approach. Its software package, including tools and methodology, does not require heavy computation power to calculate the metrics;
  • Objectiveness and reliability: Atos combines a hardware-agnostic, technology-agnostic approach with a strong expertise in algorithm design and optimization acquired working with major industry clients and technology leaders in the quantum field​. The methodology used to build Q-score will be made public and open to assessment.

A free software kit, which enables Q-score to be run on any processor will be available in Q1 2021. Atos invites all manufacturers to run Q-score on their technology and publish their results.

Thanks to the advanced qubit simulation capabilities of the Atos Quantum Learning Machine (Atos QLM), its powerful quantum simulator, Atos is able to calculate Q-score estimates for various platforms. These estimates take into account the characteristics publicly provided by the manufacturers. Results range around a Q-score of 15 Qs, but progress is rapid, with an estimated average Q-score dating from one year ago in the area of 10 Qs, and an estimated projected average Q-score dating one year from now to be above 20 Qs.

Q-score has been reviewed by the Atos Quantum Advisory Board, a group of international experts, mathematicians and physicists authorities in their fields, which met on December 4, 2020.

Understanding Q-score using the Travelling Salesman Problem (TSP)

Today’s most promising application of quantum computing is solving large combinatorial optimization problems. Examples of such problems are the famous TSP problem and the less notorious but as important Max-Cut problem.

Problem statement: a traveler needs to visit N number of cities in a round-tour, where distances between all the cities are known and each city should be visited just once. What is the absolute shortest possible route so that he visits each city exactly once and returns to the origin city?

Simple in appearance, this problem becomes quite complex when it comes to giving a definitive, perfect answer taking into account an increasing number of N variables (cities). Max-Cut is a more generic problem, with a broad range of applications, for instance in the optimization of electronic boards or in the positioning of 5G antennas.

Q-score evaluates the capacity of a quantum processor to solve these combinatorial problems.

Q-score, Quantum Performance, and Quantum Superiority

While the most powerful High Performance Computers (HPC) worldwide to come in the near term (so called “exascale”) would reach an equivalent Q-score close to 60, today we estimate, according to public data, that the best Quantum Processing Unit (QPU) yields a Q-score around 15 Qs. With recent progress, we expect quantum performance to reach Q-scores above 20 Qs in the coming year.

Q-score can be measured for QPUs with more than 200 qubits. Therefore, it will remain the perfect metrics reference to identify and measure quantum superiority, defined as the ability of quantum technologies to solve an optimization problem that classical technologies cannot solve at the same point in time.

As per the above, Atos estimates quantum superiority in the context of optimization problems to be reached above 60 Qs.

Atos’ commitment to advance industry applications of quantum computing

The year 2020 represents an inflexion point in the quantum race, with the identification of the first real-life problems or applications which are unable to be solved in the classical world but may be able to be solved in the quantum world. As for any disruptive technology, envisaging the related applications (as well as necessary ethical limitations) is a major step towards conviction, adoption and success. This is exactly where Atos sees its main role.

Leveraging the Atos QLM and Atos’ unique expertise in algorithm development, the Group coordinates the European project NEASQC – NExt ApplicationS of Quantum Computing, one of the most ambitious projects which aims to boost near-term quantum applications and demonstrates quantum superiority. NEASQC brings together academics and manufacturers, motivated by the quantum acceleration of their business applications. These applications will be further supported by the release in 2023 of the first Atos NISQ accelerator, integrating qubits in an HPC – High Performance Computing architecture.

Below are some examples of applications from NEASQC industrial partners that could be accelerated by quantum computing:

  • Carbon dioxide capture with Total: studying the capture of CO2 to give researchers information about interactions between molecules to understand, simulate, and optimize adsorption (carbon capture);
  • Smart charging with EDF: optimizing the load of electrical cars on fast charging stations, to prevent queuing and to save time and money, for large floats;
  • Quantum Monte-Carlo with HSBC: developing efficient algorithms that could either substitute or redefine Monte-Carlo techniques for near-term quantum computers, thus significantly increasing the efficiency of derivative pricing or risk management models;
  • Quantum Rule-Based System with CESGA: building a quantum rule-based system that solves a specific problem which has a vast amount of data and rules, in order to diagnose and treat a specific type of breast cancer known as invasive ductal carcinoma.

To learn more about NEASQC and the use-cases above (as well as others), please visit https://neasqc.eu/

Bob Sorensen, Senior Vice President of Research, Chief Analyst for Quantum Computing at Hyperion Research, LLC, comments: “Leveraging its widely acknowledged expertise in supercomputing, Atos is working to provide quantum computing users with early and tangible computational advantage on various applications by building on its ‘Atos Quantum’ R&D program, with the aim of delivering near-term results through a hybrid quantum supercomputing approach.The launch of Q-score is a key innovative step that offers a way for the quantum computing community to better characterize gains by focusing on real-life use-cases.”

On Friday, December 4, 2020, the Group will hold a media conference call in English at 12 pm CET, chaired by Elie Girard, CEO, and Cyril Allouche, Fellow, Head of the Atos Quantum R&D Program, in order to present Q-score and answer questions from the press. Members of the Atos Quantum Advisory Board will be present. After the conference, a replay of the webcast will be available. Journalists can register to the press conference at: https://quantum-press-conference-atos.aio-events.com/105/participation_form

Atos Quantum Advisory Board members are:

  • Alain Aspect, Professor at the Institut d’Optique Graduate School and Ecole Polytechnique, Université Paris-Saclay;
  • David DiVincenzo, Alexander von Humboldt Professor, Director of the Institute for Quantum Information at RWTH Aachen University, Director of the Institute for Theoretical Nanoelectronics at the Juelich Research Center;
  • Artur Ekert, Professor of Quantum Physics at the Mathematical Institute, University of Oxford and Head of Centre for Quantum Technologies of Singapore;
  • Daniel Esteve, Research Director, CEA Saclay, Head of Quantronics;
  • Serge Haroche, Professor emeritus at the Collège de France, Nobel laureate in Physics.

To learn more about Q-score, please visit: https://atos.net/en/solutions/q-score


Source: Atos

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be natively integrated into four of the world's most advanced qu Read more…

Computing-Driven Medicine: Sleeping Better with HPC

September 10, 2024

As a senior undergraduate student at Fisk University in Nashville, Tenn., Ifrah Khurram's calculus professor, Dr. Sanjukta Hota, encouraged her to apply for the Sustainable Research Pathways Program (SRP). SRP was create Read more…

LLNL Engineers Harness Machine Learning to Unlock New Possibilities in Lattice Structures

September 9, 2024

Lattice structures, characterized by their complex patterns and hierarchical designs, offer immense potential across various industries, including automotive, aerospace, and biomedical engineering. With their outstand Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, integrated, and secured data. Now scientists working at univer Read more…

xAI Colossus: The Elon Project

September 5, 2024

Elon Musk's xAI cluster, named Colossus (possibly after the 1970 movie about a massive computer that does not end well), has been brought online. Musk recently posted the following on X/Twitter: "This weekend, the @xA Read more…

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with performance benchmarks. In the first paper, Understanding Data Mov Read more…

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be n Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, in Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Shutterstock 1897494979

What’s New with Chapel? Nine Questions for the Development Team

September 4, 2024

HPC news headlines often highlight the latest hardware speeds and feeds. While advances on the hardware front are important, improving the ability to write soft Read more…

Critics Slam Government on Compute Speeds in Regulations

September 3, 2024

Critics are accusing the U.S. and state governments of overreaching by including limits on compute speeds in regulations and laws, which they claim will limit i Read more…

Shutterstock 1622080153

AWS Perfects Cloud Service for Supercomputing Customers

August 29, 2024

Amazon's AWS believes it has finally created a cloud service that will break through with HPC and supercomputing customers. The cloud provider a Read more…

HPC Debrief: James Walker CEO of NANO Nuclear Energy on Powering Datacenters

August 27, 2024

Welcome to The HPC Debrief where we interview industry leaders that are shaping the future of HPC. As the growth of AI continues, finding power for data centers Read more…

CEO Q&A: Acceleration is Quantinuum’s New Mantra for Success

August 27, 2024

At the Quantum World Congress (QWC) in mid-September, trapped ion quantum computing pioneer Quantinuum will unveil more about its expanding roadmap. Its current Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Leading Solution Providers

Contributors

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Department of Justice Begins Antitrust Probe into Nvidia

August 9, 2024

After months of skyrocketing stock prices and unhinged optimism, Nvidia has run into a few snags – a  design flaw in one of its new chips and an antitrust pr Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

Spelunking the HPC and AI GPU Software Stacks

June 21, 2024

As AI continues to reach into every domain of life, the question remains as to what kind of software these tools will run on. The choice in software stacks – Read more…

Quantum Watchers – Terrific Interview with Caltech’s John Preskill by CERN

July 17, 2024

In case you missed it, there's a fascinating interview with John Preskill, the prominent Caltech physicist and pioneering quantum computing researcher that was Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire