Aurora Workshop Helps Researchers Ramp up Preparations for Exascale Computing

May 20, 2020

May 20, 2020 — The ALCF recently hosted a workshop to help researchers advance code development efforts for Argonne’s upcoming exascale system, Aurora.

Science on day one. That’s the goal for each new supercomputer introduced at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, including its forthcoming exascale system, Aurora.

From left: Intel software engineer Louise Huot, NERSC application performance group lead Jack Deslippe, and Argonne computational scientists William Huhn (standing) and Nichols Romero discuss exascale code development at the ALCF’s recent Aurora workshop. (Image: Argonne National Laboratory)

But how do you prepare for a machine before it is even built?

With Aurora’s 2021 arrival date drawing closer, the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science User Facility, has been ramping up its efforts to ready the system and its future users for science in the exascale era.

In late February, the ALCF hosted its third Aurora hands-on workshop in the past year. Around 100 researchers participating in the ALCF’s Aurora Early Science Program (ESP) and DOE’s Exascale Computing Project (ECP) attended the three-day workshop to advance their code and software development efforts for the Intel-Cray system.

“The primary goal of the workshop was to bring project developers together with Intel and Argonne experts for hands-on work with their applications,” said Tim Williams, manager of the Aurora ESP and deputy director of Argonne’s Computational Science Division.

ALCF Director Michael Papka welcomes researchers to a three-day Aurora workshop held at Argonne in late February. (Image: Argonne National Laboratory)

Over the past year, Intel has unveiled new architectural details and tools that are helping researchers to accelerate their preparatory work. Intel’s initial oneAPI beta software toolkit aims to simplify application development across diverse architectures. Existing Intel graphics processing units (GPUs) are helping researchers gain a better understanding of Aurora’s “Ponte Vecchio” GPU architecture, and serve as a development platform.

With access to the early Aurora software development kit (a more frequently updated version of the publicly available oneAPI toolkit) and Intel Iris (Gen9) GPUs through Argonne’s Joint Laboratory for System Evaluation, the workshop attendees had an opportunity to test code performance and functionality using programming models that will be supported on Aurora.

Getting some hands-on time compiling and executing application kernels on Intel GPUs was one of the primary draws for Jack Deslippe, applications performance group lead at the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory. Deslippe is the lead developer of BerkeleyGW (a massively parallel simulation package used to compute electron excited-state properties) and co-principal investigator of an Aurora ESP project that will use simulation and machine learning tools to identify new materials for solar cells.

“We succeeded in building and running a couple of central BerkeleyGW C++ kernels on Intel Gen9 GPUs,” said Deslippe, who also serves as the ECP’s application development lead for chemistry and materials science. “In particular, we were able to execute a kernel that utilizes OpenMP offloading to the GPU and verify that correctness and performance is consistent with the fraction of peak FLOPS (floating operations per second) on Gen9 that we anticipate. While this was accomplished for a kernel and not the entire application, the results are very encouraging.”

Argonne physicist Walter Hopkins is leading an ESP project that will use Aurora to run simulations of particle interactions for the ATLAS experiment at CERN’s Large Hadron Collider (LHC). The project, which was originally led by the now-retired Argonne Distinguished Fellow Jimmy Proudfoot, is working to develop exascale workflows, algorithms, and machine learning capabilities to advance the search for new physics discoveries at the LHC.

“The amount of simulation needed for the High-Luminosity LHC (HL-LHC) upgrade will require the power of Aurora and future exascale systems,” Hopkins said. “Accurate and sufficiently large simulation samples will be essential in searches for new physics at the HL-LHC. We also want to prepare ATLAS data to be used for deep learning and hyperparameter optimizations on Aurora.”

Hopkins attended the workshop to learn about the deep learning libraries that will be available on Aurora and to work on porting their fast calorimeter simulation code, FastCaloSim, to Intel GPUs using Data Parallel C++ (DPC++), an extension of C++ that incorporates the SYCL programming model and other new features. He and his colleagues were able to make progress on both fronts.

“We had some valuable discussions on the capabilities of DPC++,” Hopkins said. “It was also very helpful to get prompt feedback on bugs and advice on structuring current and future aspects of our code.”

Several researchers participating in the ALCF’s Aurora Early Science Program and DOE’s Exascale Computing Project attended Argonne’s Aurora workshop to advance their code and software development efforts for the lab’s upcoming exascale system. (Image: Argonne National Laboratory)

Deslippe also appreciated the opportunity to work directly with the Argonne and Intel experts and to hear about the progress that other ESP and ECP teams were making.

“Getting questions answered and bugs fixed in real-time leads to a really productive experience,” Deslippe said. “There is a psychological effect of being surrounded by a group of people with common goals and motivations that inspires you to get as much out of your code as you can.”

Looking ahead, the ALCF will continue its Aurora training efforts with some web-based events in the coming months, including the next installment of its quarterly ESP webinar series in June. The Argonne-Intel Center of Excellence also continues to host Aurora hackathons, with some virtual sessions being planned for 2020. These multi-day collaborative events pair individual ESP teams with Argonne and Intel staff members to further advance efforts to port and optimize applications for Aurora.

About The Argonne Leadership Computing Facility 

The Argonne Leadership Computing Facility (ALCF), a U.S. Department of Energy (DOE) Office of Science User Facility located at Argonne National Laboratory, enables breakthroughs in science and engineering by providing supercomputing resources and expertise to the research community. Supported by DOE’s Advanced Scientific Computing Research (ASCR) program, the ALCF is one of two DOE Leadership Computing Facilities in the nation dedicated to open science.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

About The U.S. Department of Energy’s Office of Science

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science


Source: Argonne National Laboratory 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire