AWS Announces Opening of the AWS Center for Quantum Computing

October 28, 2021

Oct. 28, 2021 — What if by harnessing the properties of quantum mechanics we could model and simulate the behavior of matter at its most fundamental level, down to how molecules interact? The machine that would make that possible would be transformative, changing what we know about science and how we probe nature for answers.

Quantum computers have the potential to be this machine: The scientific community has known for some time now that certain computational tasks can be solved more efficiently when qubits (quantum bits) are used to perform the calculations, and that quantum computers promise to solve some problems that are currently beyond the reach of classical computers. But many unknowns remain: How should we build such a machine so that it can handle big problems, useful problems of practical importance? How can we scale it to thousands and millions of qubits while maintaining precise control over fragile quantum states and protecting them from their environment? And what customer problems should we design it to tackle first? These are some of the big questions that motivate us at the AWS Center for Quantum Computing.

The Home of AWS Quantum Technologies

In this post I am excited to announce the opening of the new home of the AWS Center for Quantum Computing, a state-of-the-art facility in Pasadena, California, where we are embarking on a journey to build a fault-tolerant quantum computer. This new building is dedicated to our quantum computing efforts, and includes office space to house our quantum research teams, and laboratories comprising the scientific equipment and specialized tools for designing and running quantum devices. Here our team of hardware engineers, quantum theorists, and software developers work side by side to tackle the many challenges of building better quantum computers. Our new facility includes everything we need to push the boundaries of quantum R&D, from making, testing, and operating quantum processors, to innovating the processes for controlling quantum computers and scaling the technologies needed to support bigger quantum devices, like cryogenic cooling systems and wiring.

The AWS Center for Quantum Computing is located on the Caltech campus in Pasadena, California.

From Research to Reality

A bold goal like building a fault-tolerant quantum computer naturally means that there will be significant scientific and engineering challenges along the way, and supporting fundamental research and making a commitment to the scientific community working on these problems is essential for accelerating progress. Our Center is located on the Caltech campus, which enables us to interact with students and faculty from leading research groups in physics and engineering just a few buildings away. We chose to partner with Caltech in part due to the university’s rich history of contributions to computing – both classical and quantum – from pioneers like Richard Feynman, whose vision 40 years ago can be credited with kick-starting the field of quantum computing, to the current technical leads of the AWS Center for Quantum Computing: Oskar Painter (John G Braun Professor of Applied Physics, Head of Quantum Hardware), and Fernando Brandao (Bren Professor of Theoretical Physics, Head of Quantum Algorithms). Through this partnership we’re also supporting the next generation of quantum scientists, by providing scholarships and training opportunities for students and young faculty members.

But our connections to the research community don’t end here. Our relationships with a diverse group of researchers help us stay at the cutting edge of quantum information sciences research. For example, several experts in quantum related fields are contributing to our efforts as Amazon Scholars and Amazon Visiting Academics, including Liang Jiang (University of Chicago), Alexey Gorshkov (University of Maryland), John Preskill (Caltech), Gil Refael (Caltech), Amir Safavi-Naeimi (Stanford), Dave Schuster (University of Chicago), and James Whitfield (Dartmouth). These experts help us innovate and overcome technical challenges even as they continue to teach and conduct research at their universities. I believe such collaborations at this early stage of the field will be critical to fully understand the potential applications and societal impact of quantum technologies.

Building a Better Qubit

There are many ways to physically realize a quantum computer: quantum information can, for example, be encoded in particles found in nature, such as photons or atoms, but at the AWS Center for Quantum Computing we are focusing on superconducting qubits – electrical circuit elements constructed from superconducting materials. We chose this approach partly because the ability to manufacture these qubits using well-understood microelectronic fabrication techniques makes it possible to make many qubits in a repeatable way, and gives us more control as we start scaling up the number of qubits. There is more to building a useful quantum computer than increasing the number of qubits, however. Another important metric is the computer’s clock speed, or the time required to perform quantum gate operations. Faster clock speeds means solving problems faster, and here again superconducting qubits have an edge over other modalities, as they provide very fast quantum gates.

An AWS quantum hardware engineer works on a dilution refrigerator. The performance of superconducting quantum devices relies on precise wiring configurations and shielding to minimize fluctuations that contribute to noise.

The ultimate measure of the quality of our qubits will be the error rate, or how accurately we can perform quantum gates. Quantum devices available today are noisy and are as a result limited in the size of circuits that they can handle (a few thousands of gates is the best we can hope for with Noisy Intermediate-Scale Quantum (NISQ) devices). This in turn severely limits their computational power. There are two ways that we are approaching making better qubits at the AWS Center for Quantum Computing: the first is by improving error rates at the physical level, for example by investing in material improvements that reduce noise. The second is through innovative qubit architectures, including using Quantum Error Correction (QEC) to reduce quantum gate errors by redundantly encoding information into a protected qubit, called a logical qubit. This allows for the detection and correction of gate errors, and for the implementation of gate operations on the encoded qubits in a fault-tolerant way.

Innovating Error Correction

Typical QEC requires a large number of physical qubits to encode every qubit of logical information. At the AWS Center for Quantum Computing, we have been researching ways to reduce this overhead through the use of qubit architectures that allow us to implement error correction more efficiently in quantum hardware. In particular, we are optimistic about approaches that make use of linear harmonic oscillators such as Gottesman-Kitaev-Preskill (GKP) qubits and “Schrödinger cat” qubits, and recently proposed a theoretical design for a fault-tolerant quantum computer based on hardware-efficient architecture leveraging the latter.

One thing that differentiates this approach is that we take advantage of a technique called “error-biasing”. There are two types of errors that can affect quantum computation: bit-flip (flips between the 0 and 1 state due to noise) and phase-flips (the reversal of parity in the superposition of 0 and 1). In error-biasing, we use physical qubits that allow us to suppress bit-flips exponentially, while only increasing phase-flips linearly. We then combine this error-biasing with an outer repetition code consisting of a linear chain of cat qubits to detect and correct for the remaining phase-flip errors. The result is a fault-tolerant logical qubit that has a lower error rate for storing and manipulating the encoded quantum information. Not having to correct for bit-flip errors is the reason this architecture is hardware efficient and shows tremendous potential for scaling.

Building the Future for Our Customers

The journey to an error-corrected quantum computer starts with a few logical qubits. A key milestone for our team – and the quantum computing field – will be demonstrating the breakeven point with a logical qubit, where the accuracy of the logical qubit surpasses the accuracy of the physical qubits that constitute its building blocks. Our ultimate goal is to deliver an error-corrected quantum computer that can perform reliable computations not just beyond what any classical computing technology is capable of, but at the scale needed to solve customer problems of practical importance.

A microwave package encloses the AWS quantum processor. The packaging is designed to shield the qubits from environmental noise while enabling communication with the quantum computer’s control systems.

Why set such an ambitious goal? The quantum algorithms that have the most potential for significant impact, for example in industries like manufacturing or pharmaceuticals, can’t be solved by simply expanding today’s quantum technologies. Pursuing breakthrough innovations rather than incremental improvements always takes longer, but I believe a bold approach that fundamentally reconsiders what makes a good qubit is the best way to deliver the ultimate computational tool: a machine that can execute algorithms requiring hundreds of thousands to billions of quantum gate operations on each qubit with at most one error over the total number of gates, a level of accuracy needed to solve the most complex computational problems that have societal and commercial value.

In talking to our AWS quantum customers over the last couple years I’ve found that those that are most excited about the potential for quantum are also realistic about the challenges of realizing the full potential of this technology, and are eager to collaborate with us to make it a reality even as they build up their own internal expertise in quantum. At the AWS Center for Quantum computing, we have assembled a fantastic team that is committed to this exciting journey toward fault-tolerant quantum computing. Stay tuned, and join us.


Source: Nadia Carlsten, AWS

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

Cerebras Systems Thinks Forward on AI Chips as it Claims Performance Win

June 22, 2022

Cerebras Systems makes the largest chip in the world, but is already thinking about its upcoming AI chips as learning models continue to grow at breakneck speed. The company’s latest Wafer Scale Engine chip is indeed the size of a wafer, and is made using TSMC’s 7nm process. The next chip will pack in more cores to handle the fast-growing compute needs of AI, said Andrew Feldman, CEO of Cerebras Systems. Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Quinn in a presentation delivered to the 79th HPC User Forum Read more…

IDC Perspective on Integration of Quantum Computing and HPC

June 20, 2022

The insatiable need to compress time to insights from massive and complex datasets is fueling the demand for quantum computing integration into high performance computing (HPC) environments. Such an integration would allow enterprises to accelerate and optimize current HPC applications and processes by simulating and emulating them on today’s noisy... Read more…

Q&A with Intel’s Jeff McVeigh, an HPCwire Person to Watch in 2022

June 17, 2022

HPCwire presents our interview with Jeff McVeigh, vice president and general manager, Super Compute Group, Intel Corporation, and an HPCwire 2022 Person to Watch. McVeigh shares Intel's plans for the year ahead, his pers Read more…

AWS Solution Channel

Shutterstock 152995403

Bayesian ML Models at Scale with AWS Batch

This post was contributed by Ampersand’s Jeffrey Enos, Senior Machine Learning Engineer, Daniel Gerlanc, Senior Director for Data Science, and Brandon Willard, Data Science Lead. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 261863138

Using Cloud-Based, GPU-Accelerated AI for Financial Risk Management

There are strict rules governing financial institutions with a number of global regulatory groups publishing financial compliance requirements. Financial institutions face many challenges and legal responsibilities for risk management, compliance violations, and failure to catch financial fraud. Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Intel CPUs and GPUs across multiple partitions. The newly reimag Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

Cerebras Systems Thinks Forward on AI Chips as it Claims Performance Win

June 22, 2022

Cerebras Systems makes the largest chip in the world, but is already thinking about its upcoming AI chips as learning models continue to grow at breakneck speed. The company’s latest Wafer Scale Engine chip is indeed the size of a wafer, and is made using TSMC’s 7nm process. The next chip will pack in more cores to handle the fast-growing compute needs of AI, said Andrew Feldman, CEO of Cerebras Systems. Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

IDC Perspective on Integration of Quantum Computing and HPC

June 20, 2022

The insatiable need to compress time to insights from massive and complex datasets is fueling the demand for quantum computing integration into high performance computing (HPC) environments. Such an integration would allow enterprises to accelerate and optimize current HPC applications and processes by simulating and emulating them on today’s noisy... Read more…

Q&A with Intel’s Jeff McVeigh, an HPCwire Person to Watch in 2022

June 17, 2022

HPCwire presents our interview with Jeff McVeigh, vice president and general manager, Super Compute Group, Intel Corporation, and an HPCwire 2022 Person to Watc Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

D-Wave Debuts Advantage2 Prototype; Seeks User Exploration and Feedback

June 16, 2022

Starting today, D-Wave Systems is providing access to a 500-plus-qubit prototype of its forthcoming 7000-qubit Advantage2 quantum annealing computer, which is d Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

AMD/Xilinx Takes Aim at Nvidia with Improved VCK5000 Inferencing Card

March 8, 2022

AMD/Xilinx has released an improved version of its VCK5000 AI inferencing card along with a series of competitive benchmarks aimed directly at Nvidia’s GPU line. AMD says the new VCK5000 has 3x better performance than earlier versions and delivers 2x TCO over Nvidia T4. AMD also showed favorable benchmarks against several Nvidia GPUs, claiming its VCK5000 achieved... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips

March 22, 2022

The battle for datacenter dominance keeps getting hotter. Today, Nvidia kicked off its spring GTC event with new silicon, new software and a new supercomputer. Speaking from a virtual environment in the Nvidia Omniverse 3D collaboration and simulation platform, CEO Jensen Huang introduced the new Hopper GPU architecture and the H100 GPU... Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

ISC 2022 Booth Video Tours

AMD
AWS
DDN
Dell
Intel
Lenovo
Microsoft
PENGUIN SOLUTIONS

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Nvidia Dominates MLPerf Inference, Qualcomm also Shines, Where’s Everybody Else?

April 6, 2022

MLCommons today released its latest MLPerf inferencing results, with another strong showing by Nvidia accelerators inside a diverse array of systems. Roughly fo Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

Industry Consortium Forms to Drive UCIe Chiplet Interconnect Standard

March 2, 2022

A new industry consortium aims to establish a die-to-die interconnect standard – Universal Chiplet Interconnect Express (UCIe) – in support of an open chipl Read more…

Covid Policies at HPC Conferences Should Reflect HPC Research

June 6, 2022

Supercomputing has been indispensable throughout the Covid-19 pandemic, from modeling the virus and its spread to designing vaccines and therapeutics. But, desp Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire