Berkeley Lab Cosmology Software Scales Up to 658,784 Knights Landing Cores

September 20, 2017

Sept. 20 — The Cosmic Microwave Background (CMB) is the oldest light ever observed and is a wellspring of information about our cosmic past. This ancient light began its journey across space when the universe was just 380,000 years old. Today it fills the cosmos with microwaves. By parsing its subtle features with telescopes and supercomputers, cosmologists have gained insights about both the properties of our Universe and of fundamental physics.

Despite all that we’ve learned from the CMB so far, there is still much about the universe that remains a mystery. Next-generation experiments like CMB Stage-4 (CMB-S4) will probe this primordial light at even higher sensitivity to learn more about the evolution of space and time and the nature of matter. But before this can happen scientists need to ensure that their data analysis infrastructure will be able to handle the information deluge.

Cumulative daily maps of the sky temperature and polarization at each frequency showing how the atmosphere and noise integrate down over time. The year-long campaign spanned 129 observation-days during which the ACTpol SS patch was available for a 13-hour constant elevation scan. To make these maps, the signal, noise, and atmosphere observations were combined (including percent level detector calibration error), filtered with a 3rd order polynomial, and binned into pixels. (Image Credit: Julian Borrill, Berkeley Lab)

That’s where researchers in Lawrence Berkeley National Laboratory’s (Berkeley Lab’s) Computational Cosmology Center (C3) come in. They recently achieved a critical milestone in preparation for upcoming CMB experiments: scaling their data simulation and reduction framework TOAST (Time Ordered Astrophysics Scalable Tools) to run on all 658,784 Intel Knights Landing (KNL) Xeon Phi processor cores on the National Energy Research Scientific Computing Center’s (NERSC’s) Cori system.

The team also extended TOAST’s capabilities to support ground-based telescope observations, including implementing a module to simulate the noise introduced by looking through the atmosphere, which must then be removed to get a clear picture of the CMB. All of these achievements were made possible with funding from Berkeley’s Laboratory Directed Research and Development (LDRD) program.

“Over the next 10 years, the CMB community is expecting a 1,000-fold increase in the volume of data being gathered and analyzed—better than Moore’s Law scaling, even as we enter an era of energy-constrained computing,” says Julian Borrill, a cosmologist in Berkeley Lab’s Computational Research Division (CRD) and head of C3. “This means that we’ve got to sit at the bleeding edge of computing just to keep up with the data volume.”

TOAST: Balancing Scientific Accessibility and Performance

cori3 675x380

Cori Supercomputer at NERSC.

To ensure that they are making the most of the latest in computing technology, the C3 team worked closely with staff from NERSC, Intel and Cray to get their TOAST code to run on all of Cori supercomputer’s 658,784 KNL processors. This collaboration is part of the NERSC Exascale Science Applications Program (NESAP), which helps science code teams adapt their software to take advantage of Cori’s manycore architecture and could be a stepping-stone to next generation exascale supercomputers.

“In the CMB community, telescope properties differ greatly, and up until now each group typically had its own approach to processing data. To my knowledge, TOAST is the first attempt to create a tool that is useful for the entire CMB community,” says Ted Kisner, a Computer Systems Engineer in C3 and one of the lead TOAST developers.

“TOAST has a modular design that allows it to adapt to any detector or telescope quite easily,” says Rollin Thomas, a big data architect at NERSC who helped the team scale TOAST on Cori. “So instead of having a lot of different people independently re-inventing the wheel for each new experiment, thanks to C3 there is now a tool that the whole community can embrace.”

According to Kisner, the challenges to building a tool that can be used by the entire CMB community were both technical and sociological. Technically, the framework had to perform well at high concurrency on a variety of systems, including supercomputers, desktop workstations and laptops. It also had to be flexible enough to interface with different data formats and other software tools. Sociologically, parts of the framework that researchers interact with frequently had to be written in a high-level programming language that many scientists are familiar with.

The C3 team achieved a balance between computing performance and accessibility by creating a hybrid application. Parts of the framework are written in C and C++ to ensure that it can run efficiently on supercomputers, but it also includes a layer written in Python, so that researchers can easily manipulate the data and prototype new analysis algorithms.

“Python is a tremendously popular and important programming language, it’s easy to learn and scientists value how productive it makes them. For many scientists and graduate students, this is the only programming language they know,” says Thomas. “By making Python the interface to TOAST, the C3 team essentially opens up HPC resources and experiments to scientists that would otherwise be struggling with big data and not have access to supercomputers. It also helps scientists focus their customization efforts at parts of the code where differences between experiments matter the most, and re-use lower-level algorithms common across all the experiments.”

To ensure that all of TOAST could effectively scale up to 658,784 KNL cores, Thomas and his colleagues at NERSC helped the team launch their software on Cori with Shifter—an open-source, software package developed at NERSC to help supercomputer users easily and securely run software packaged as Linux Containers. Linux container solutions, like Shifter, allow an application to be packaged with its entire software stack including libraries, binaries and scripts as well as defining other run-time parameters like environment variables.  This makes it easy for a user to repeatedly and reliably run applications even at large-scales.

“This collaboration is a great example of what NERSC’s NESAP for data program can do for science,” says Thomas. “By fostering collaborations between the C3 team and Intel engineers, we increased their productivity on KNL. Then, we got them to scale up to 658,784 KNL cores with Shifter. This is the biggest Shifter job done for science so far.”

With this recent hero run, the cosmologists also accomplished an important scientific milestone: simulating and mapping 50,000 detectors observing 20 percent of the sky at 7 frequencies for 1 year. That’s the scale of data expected to be collected by the Simons Observatory, which is an important stepping-stone to CMB-S4.

“Collaboration with NERSC is essential for Intel Python engineers – this is unique opportunity for us to scale Python and other tools to hundreds thousands of cores,” says Sergey Maidanov, Software Engineering Manager at Intel. “TOAST was among a few applications where multiple tools helped to identify and address performance scaling bottlenecks, from Intel MKL and Intel VTune Amplifier to Intel Trace Analyzer and Collector and other tools. Such a collaboration helps us to set the direction for our tools development.”

Accounting for the Atmosphere

.”>atm 10 30 10v1

The telescope’s view through one realization of turbulent, wind-blown, atmospheric water vapor. The volume of atmosphere being simulated depended on (a) the scan width and duration and (b) the wind speed and direction, both of which changed every 20 minutes. The entire observation used about 5000 such realizations. (Image Credit: Julian Borrill)

The C3 team originally deployed TOAST at NERSC nearly a decade ago primarily to support data analysis for Planck, a space-based mission that observed the sky for four years with 72 detectors. By contrast, CMB-S4 will scan the sky with a suite of ground-based telescopes, fielding a total of around 500,000 detectors for about five years beginning in the mid 2020s.

In preparation for these ground-based observations, the C3 team recently added an atmospheric simulation module that naturally generates correlated atmospheric noise for all detectors, even detectors on different telescopes in the same location. This approach allows researchers to test new analysis algorithms on much more realistic simulated data.

“As each detector observes the microwave sky through the atmosphere it captures a lot of thermal radiation from water vapor, producing extremely correlated noise fluctuations between the detectors,” says Reijo Keskitalo, a C3 computer systems engineer who led the atmospheric simulation model development.

Keskitalo notes that previous efforts by the CMB community typically simulated the correlated atmospheric noise for each detector separately. The problem with this approach is it can’t scale to the huge numbers of detectors expected for experiments like CMB-S4. But by simulating the common atmosphere observed by all the detectors once, the novel C3 method ensures that the simulations are both tractable and realistic.

“For satellite experiments like Planck, the atmosphere isn’t an issue. But when you are observing the CMB with ground-based telescopes, the atmospheric noise problem is malignant because it doesn’t average out with more detectors. Ultimately, we needed a tool that would simulate something that looks like the atmosphere because you don’t get a realistic idea of experiment performance without it,” says Keskitalo.

“The ability to simulate and reduce the extraordinary data volume with sufficient precision and speed will be absolutely critical to achieving CMB-S4’s science goals,” says Borrill.

In the short term, tens of realizations are needed to develop the mission concept, he adds. In the medium term, hundreds of realizations are required for detailed mission design and the validation and verification of the analysis pipelines. Long term, tens of thousands of realizations will be vital for the Monte Carlo methods used to obtain the final science results.

“CMB-S4 will be a large, distributed collaboration involving at least 4 DOE labs. We will continue to use NERSC – which has supported the CMB community for 20 years now – and, given our requirements, likely need the Argonne Leadership Class Facility (ALCF) systems too. There will inevitably be several generations of HPC architecture over the lifetime of this effort, and our recent work is a stepping stone that allows us to take full advantage of the Xeon Phi based systems currently being deployed at NERSC,” says Borrill.

The work was funded through Berkeley Lab’s LDRD program designed to seed innovative science and new research directions. NERSC and ALCF are both DOE Office of Science User Facilities.

The Office of Science of the U.S. Department of Energy supports Berkeley Lab. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

More on the history of CMB research at NERSC:

About NERSC and Berkeley Lab

The National Energy Research Scientific Computing Center (NERSC) is a U.S. Department of Energy Office of Science User Facility that serves as the primary high-performance computing center for scientific research sponsored by the Office of Science. Located at Lawrence Berkeley National Laboratory, the NERSC Center serves more than 6,000 scientists at national laboratories and universities researching a wide range of problems in combustion, climate modeling, fusion energy, materials science, physics, chemistry, computational biology, and other disciplines. Berkeley Lab is a DOE national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the U.S. DOE Office of Science. Learn more about computing sciences at Berkeley Lab.


Source: NERSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiology. Clara, you may recall, is Nvidia’s biomedical platform Read more…

By John Russell

DARPA, NSF Seek Real-Time ML Processor

March 18, 2019

A new U.S. research initiative seeks to develop a processor capable of real-time learning while operating with the “efficiency of the human brain.” The National Science Foundation (NSF) and the Defense Advanced Re Read more…

By George Leopold

It’s Official: Aurora on Track to Be First U.S. Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaflops, will be delivered by the end of 2021 to Argonne Nation Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Spark That Ignited A New World of Real-Time Analytics

High Performance Computing has always been about Big Data. It’s not uncommon for research datasets to contain millions of files and many terabytes, even petabytes of data, or more. Read more…

NASA’s Pleiades Simulates Launch Abort Scenarios

March 15, 2019

NASA is using flow simulations running on its Pleiades supercomputer to help design the agency’s next manned spacecraft, Orion. Crew safety is paramount, so NASA engineers are using the HPC cluster to simulate and v Read more…

By George Leopold

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First U.S. Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Optalysys Rolls Commercial Optical Processor

March 7, 2019

Optalysys, Ltd., a U.K. company seeking to advance it optical co-processor technology, moved a step closer this week with the unveiling of what it claims is th Read more…

By George Leopold

Intel Responds to White House AI Initiative

March 6, 2019

The Trump Administration’s release last month of the “American AI Initiative,” aimed at prioritizing federal R&D investments in machine intelligence, Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This