Berkeley Lab Highlights ‘the Little Computer Cluster That Could’

May 3, 2019

May 3, 2019 — Decades before “big data” and “the cloud” were a part of our everyday lives and conversations, a custom computer cluster based at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) enabled physicists around the world to remotely and simultaneously analyze and visualize data.

The PDSF computer cluster in 2003. (Credit: Berkeley lab)

The Parallel Distributed Systems Facility (PDSF) cluster, which had served as a steady workhorse in supporting groundbreaking and even Nobel-winning research around the world since the 1990s, switched off last month.

During its lifetime the cluster and its dedicated support team racked up many computing achievements and innovations in support of large collaborative efforts in nuclear physics and high-energy physics. Some of these innovations have persevered and evolved in other systems.

The cluster handled data for experiments that produce a primordial “soup” of subatomic particles to teach us about the makings of matter, search for intergalactic particle signals deep within Antarctic ice, and hunt for dark matter in a mile-deep tank of liquid xenon at a former mine site. It also handled data for a space observatory mapping the universe’s earliest light, and for Earth-based observations of supernovas.

It supported research leading to the discoveries of the morphing abilities of ghostly particles called neutrinos, the existence of the Higgs boson and the related Higgs field that generates mass through particle interactions, and the accelerating expansion rate of the universe that is attributed to a mysterious force called dark energy.

Some of PDSF’s collaboration users have transitioned to the Cori supercomputer at Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC), with other participants moving to other systems. The transition to Cori gives users access to more computing power in an era of increasingly hefty and complex datasets and demands.

“A lot of great physics and science was done at PDSF,” said Richard Shane Canon, a project engineer at NERSC who served as a system lead for PDSF from 2003-05. “We learned a lot of cool things from it, and some of those things even became part of how we run our supercomputers today. It was also a unique partnership between experiments and a supercomputing facility – it was the first of its kind.”

PDSF was small when compared to its supercomputer counterparts that handle a heavier load of computer processors, data, and users, but it had developed a reputation for being responsive and adaptable, and its support crew over the years often included physicists who understood the science as well as the hardware and software capabilities and limitations.

“It was ‘The Little Engine That Could,’” said Iwona Sakrejda, a nuclear physicist who supported PDSF and its users for over a decade in a variety of roles at NERSC and retired from Berkeley Lab in 2015. “It was the ‘boutique’ computer cluster.”

PDSF, because it was small and flexible, offered an R&D environment that allowed researchers to test out new ideas for analyzing and visualizing data. Such an environment may have been harder to find on larger systems, she said. Its size also afforded a personal touch.

“When things didn’t work, they had more handholding,” she added, recalling the numerous researchers that she guided through the PDSF system – including early career researchers working on their theses.

“It was gratifying. I developed a really good relationship with the users,” Sakrejda said. “I understood what they were trying to do and how their programs worked, which was important in creating the right architecture for what they were trying to accomplish.”

She noted that because the PDSF system was constantly refreshed, it sometimes led to an odd assortment of equipment put together from different generations of hardware, in sharp contrast to the largely homogenous architecture of today’s supercomputers.

PDSF participants included collaborations for the Sudbury Neutrino Observatory (SNO) in Canada, the Solenoid Tracker at Brookhaven National Laboratory’s Relativistic Heavy Ion Collider (STAR), IceCube near the South Pole, Daya Bay in China, the Cryogenic Underground Observatory for Rare Events (CUORE) in Italy, the Large Underground Xenon (LUX), LUX-ZEPLIN (LZ), and MAJORANA experiments in South Dakota, the Collider Detector at Fermilab (CDF), and the ATLAS Experiment and A Large Ion Collider Experiment (ALICE) at Europe’s CERN laboratory, among others. The most data-intensive experiments use a distributed system of clusters like PDSF.

The STAR collaboration was the original participant and had by far the highest overall use of PDSF, and the ALICE collaboration had grown to become one of the largest PDSF users by 2010. Both experiments have explored the formation and properties of an exotic superhot particle soup known as the quark-gluon plasma by colliding heavy particles.

SNO researchers’ findings about neutrinos’ mass and ability to change into different forms or flavors led to the 2015 Nobel Prize in physics(see a related article), and PDSF played a notable role in the early analyses of SNO data.

Art McDonald, who shared that Nobel as director of the SNO Collaboration, said, “The PDSF computing facility was used extensively by the SNO Collaboration, including our collaborators at Berkeley Lab.”

He added, “This resource was extremely valuable in simulations and data analysis over many years, leading to our breakthroughs in neutrino physics and resulting in the award of the 2015 Nobel Prize and the 2016 Breakthrough Prize in Fundamental Physics to the entire SNO Collaboration. We are very grateful for the scientific opportunities provided to us through access to the PDSF facility.”

PDSF’s fast processing of data from the Daya Bay nuclear reactor-based experiment was also integral in precise measurements of neutrino properties.

The cluster was a trendsetter for a so-called condo model in shared computing. This model allowed collaborations to buy a share of computing power and dedicated storage space that was customized for their own needs, and a participant’s allocated computer processors on the system could also be temporarily co-opted by other cluster participants when they were not active.

In this condo analogy, “You could go use your neighbor’s house if your neighbor wasn’t using it,” said Canon, a former experimental physicist. “If everybody else was idle you could take advantage of the free capacity.” Canon noted that many universities have adopted this kind of model for their computer users.

Importantly, the PDSF system was also designed to provide easy access and support for individual collaboration members rather than requiring access to be funneled through one account per project or experiment. “If everybody had to log in to submit their jobs, it just wouldn’t work in these big collaborations,” Canon said.

The original PDSF cluster, called the Physics Detector Simulation Facility, was launched in March 1991 to support analyses and simulations for a planned U.S. particle collider project known as the Superconducting Super Collider. It was set up in Texas, the planned home for the collider, though the collider project was ultimately canceled in 1993.

1994 retrospective report on the collider project notes that the original PDSF had been built up to perform a then-impressive 7 billion instructions per second and that the science need for PDSF to simulate complex particle collisions had driven “substantial technological advances” in the nation’s computer industry.

At the time, PDSF was “the world’s most powerful high-energy physics computing facility,” the report also noted, and was built using non-proprietary systems and equipment from different manufacturers “at a fraction of the cost” of supercomputers.

Longtime Berkeley Lab physicist Stu Loken, who had led the Lab’s Information and Computing Sciences Division from 1988-2000, had played a pivotal role in PDSF’s development and in siting the cluster at Berkeley Lab.

PDSF moved to Berkeley Lab in 1996 with a new name and a new role. It was largely rebuilt with new hardware and was moved to a computer center in Oakland, Calif., in 2000 before returning once again to the Berkeley Lab site.

“A lot of the tools that we deployed to facilitate the data processing on PDSF are now being used by data users at NERSC,” said Lisa Gerhardt, a big-data architect at NERSC who worked on the PDSF system. She previously had served as a neutrino astrophysicist for the IceCube experiment.

Gerhardt noted that the cluster was nimble and responsive because of its focused user community. “Having a smaller and cohesive user pool made it easier to have direct relationships,” she said.

And Jan Balewski, computing systems engineer at NERSC who worked to transition PDSF users to the new system, said the scientific background of PDSF staff through the years was beneficial for the cluster’s users.

Balewski, a former experimental physicist, said, “Having our background, we were able to discuss with users what they really needed. And maybe, in some cases, what they were asking for was not what they really needed. We were able to help them find a solution.”

R. Jefferson “Jeff” Porter, a computer systems engineer and physicist in Berkeley Lab’s Nuclear Science Division who began working with the PDSF cluster and users as a postdoctoral researcher at Berkeley Lab in the mid-1990s, said, “PDSF was a resource that dealt with big data – many years before big data became a big thing for the rest of the world.”

It had always used off-the-shelf hardware and was steadily upgraded – typically twice a year. Even so, it was dwarfed by its supercomputer counterparts. About seven years ago the PDSF cluster had about 1,500 computer cores, compared to about 100,000 on a neighboring supercomputer at NERSC at the time. A core is the part of a computer processor that performs calculations.

Porter was later hired by NERSC to support grid computing, a distributed form of computing in which computers in different locations can work together to perform larger tasks. He returned to the Nuclear Science Division to lead the ALICE USA computing project, which established PDSF as one of about 80 grid sites for CERN’s ALICE experiment. Use of PDSF by ALICE was an easy fit, since the PDSF community “was at the forefront of grid computing,” Porter said.

In some cases, the unique demands of PDSF cluster users would also lead to the adoption of new tools at supercomputer systems. “Our community would push NERSC in ways they hadn’t been thinking,” he said. CERN developed a system to distribute software that was adopted by PDSF about five years ago, and that has also been adopted by many scientific collaborations. NERSC put in a big effort, Porter said, to integrate this system into larger machines: Cori and Edison.

Supporting multiple projects on a single system was a challenge for PDSF since each project had unique software needs, so Canon led the development of a system known as Chroot OS (CHOS) to enable each project to have a custom computing environment.

Porter explained that CHOS was an early form of “container computing” that has since enjoyed widespread adoption.

PDSF was run by a Berkeley Lab-based steering committee that typically had a member from each participating experiment and a member from NERSC, and Porter had served for about five years as the committee chair. He had been focused for the past year on how to transition users to the Cori supercomputer and other computing resources, as needed.

Balewski said that the leap of users from PDSF to Cori brings them access to far greater computing power, and allows them to “ask questions they could never ask on a smaller system.”

He added, “It’s like moving from a small town – where you know everyone but resources are limited – to a big city that is more crowded but also offers more opportunities.”

About Lawrence Berkeley National Laboratory

Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 13 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab’s facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy’s Office of Science.

Source: Lawrence Berkeley National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. The news follows HPE’s acquisition nearly three years ago o Read more…

By Doug Black & Tiffany Trader

China Establishes Seventh National Supercomputing Center

May 16, 2019

Chinese media is reporting that China will construct a new National Supercomputer Center in Zhengzhou, in central China's Henan Province. The new Zhengzhou facility will house a 100-petaflops supercomputer and will be ta Read more…

By Staff report

Interview with 2019 Person to Watch Ken King

May 16, 2019

Today, as the final installment of our HPCwire People to Watch focus series, we present our interview with Ken King, general manager of OpenPOWER for the IBM Systems Group. Ken is responsible for building and managing t Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Autonomous Vehicles: New challenges for the CAE Data Center

Managing infrastructure complexity in the age of AI

When most of us hear the term autonomous vehicles, we conjure up images of driverless Waymos or robotic transport trucks driving long-haul highway routes. Read more…

What’s New in HPC Research: Image Classification, Crowd Computing, Genome Informatics & More

May 15, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

ASC19: NTHU Returns to Glory

May 11, 2019

As many of you Student Cluster Competition fanatics know by now, Taiwan’s National Tsing Hua University (NTHU) won the gold medal at the recently concluded AS Read more…

By Dan Olds

Intel 7nm GPU on Roadmap for 2021, OneAPI Coming This Year

May 8, 2019

At Intel's investor meeting today in Santa Clara, Calif., the company filled in details of its roadmap and product launch plans and sought to allay concerns about delays of its 10nm chips. In laying out its 10nm and 7nm timelines, Intel revealed that its first 7nm product would be... Read more…

By Tiffany Trader

Ten Great Reasons to Build the 1.5 Exaflops Frontier

May 7, 2019

It’s perhaps obvious that the fundamental reason for building expensive exascale computers is to drive science and industry forward, realizing the resulting b Read more…

By John Russell

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Read more…

By George Leopold

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This