Berkeley Lab, Intel to Collaborate in Updating Scientific Codes for Manycore Architectures

June 18, 2014

June 18 — Lawrence Berkeley National Laboratory has been named an Intel Parallel Computing Center (IPCC), a collaboration with Intel aimed at adapting existing scientific applications to run on future supercomputers built with manycore processors. Such supercomputers will potentially have millions of processor cores, but today’s applications aren’t designed to take advantage of this architecture.

Most scientific applications, such as those used to study climate change, combustion, astrophysics, materials, etc., are designed to run on parallel systems, meaning that the problem is divided into smaller tasks so more of the calculations can be done simultaneously to reduce the time to solution for the scientists. With the growing use of manycore processors, such as Intel’s Xeon and Xeon Phi processors which can which can have more than 60 cores in each processor, applications will need to have even more parallelism. Unless applications are modernized, they will not be able to take advantage of the greater computing performance promised by manycore processors.

The Berkeley Lab IPCC will be led by Nick Wright of the National Energy Research Scientific Computing Center (NERSC), and Bert de Jong and Hans Johansen of the Computational Research Division (CRD).

“Although manycore processors will significantly increase supercomputing performance, that’s only part of the equation,” said Wright, who leads NERSC’s Advanced Technologies Group. “To fully capitalize on this capability, we need to modernize the applications our user community uses to advance scientific discovery. Intel Parallel Computing Centers such as ours are helping to support the community to attack this problem.”

Optimizing applications for manycore is important for NERSC, which announced in April that its next-generation supercomputer will be a Cray XC supercomputer using Intel’s next-generation Xeon Phi processor, which will have more than 60 cores. NERSC is working with its 5,000 users to help them adapt their codes to the new system, which will is expected to be delivered in 2016.

The Berkeley Lab IPCC will focus on increasing the parallelism of two widely used applications: NWChem and CAM5, the Community Atmospheric Model. NWChem is a leading application for computational chemistry and CAM5, part of the Community Earth System Model, is widely used for studying global climate. Modernizing these codes to run on manycore architecture will enable the scientific community to pursue new frontiers in the fields of chemistry, materials and climate research. Because both NWChem and CAM5 are open source applications, any improvements made to them will be shared with the broader user community, maximizing the benefits of the project.

“Enabling NWChem to harness the full power of manycore processors allows our computational chemistry and materials community to accelerate scientific discovery, tackling more complex scientific problems and reducing the time researchers have to wait for simulations to complete,” says de Jong, who leads CRD’s Scientific Computing Group and is a lead developer of the NWChem software. “Advances made by our IPCC will be shared with the developer community, including lessons learned and making our code available as open source.”

The goal is to deliver enhanced versions of NWChem and CAM5 that at least double their overall performance on manycore machines of today. The research and development will be focused upon implementing greater amounts of parallelism in the codes, starting with simple modifications such as adding or modifying existing components and going as far as exploring new algorithmic approaches that can better exploit manycore architectures.

“The open-source scientific community truly depends on CAM components running effectively at NERSC. And climate scientists have always been early adopters of cutting-edge architectures,” says Johansen, a computational science researcher at Berkeley Lab. “With more performance and more parallelism, scientists can accelerate their simulations and more accurately represent atmospheric dynamics. This collaboration with Intel will help climate science developers leverage NERSC’s and Intel’s network of resources and manycore expertise.”

Berkeley Lab is an ideal collaborator for this project. The lab is home to NERSC, the U.S. Department of Energy’s most scientifically productive supercomputing center with more than 5,000 users running about 700 different applications. CRD is home to fundamental research programs in computer science, applied mathematics, and computational science where researchers investigate future directions in scientific computing and work to develop new tools and technologies to fully exploit the increasing power of supercomputers.

According to Wright, NERSC staff will conduct extensive outreach and training to share what they have learned with NERSC’s broader user community. This will supplement the training and outreach efforts NERSC is already doing to support its users on its current flagship supercomputer “Edison,” a Cray XC30 supercomputer that uses Intel Xeon “Ivybridge” processors. Additionally, the work will be part of the NERSC’s Application Readiness program to help prepare users for the expected 2016 delivery of “Cori,” a Cray XC supercomputer architected with Intel’s next-generation Xeon Phi processor (named “Knights Landing”), which will have more than 60 cores per processor.

Berkeley Lab is the first Department of Energy laboratory to be named an IPCC. Other IPCCs are located at leading universities and research institutions around the world.

About Berkeley Lab Computing Sciences

The Lawrence Berkeley National Laboratory (Berkeley Lab) Computing Sciences organization provides the computing and networking resources and expertise critical to advancing the Department of Energy’s research missions: developing new energy sources, improving energy efficiency, developing new materials and increasing our understanding of ourselves, our world and our universe. ESnet, the Energy Sciences Network, provides the high-bandwidth, reliable connections that link scientists at 40 DOE research sites to each other and to experimental facilities and supercomputing centers around the country. The National Energy Research Scientific Computing Center (NERSC) powers the discoveries of 5,500 scientists at national laboratories and universities, including those at Berkeley Lab’s Computational Research Division (CRD). CRD conducts research and development in mathematical modeling and simulation, algorithm design, data storage, management and analysis, computer system architecture and high-performance software implementation.

Source: Lawrence Berkeley National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This