Berkeley Lab, Intel to Collaborate in Updating Scientific Codes for Manycore Architectures

June 18, 2014

June 18 — Lawrence Berkeley National Laboratory has been named an Intel Parallel Computing Center (IPCC), a collaboration with Intel aimed at adapting existing scientific applications to run on future supercomputers built with manycore processors. Such supercomputers will potentially have millions of processor cores, but today’s applications aren’t designed to take advantage of this architecture.

Most scientific applications, such as those used to study climate change, combustion, astrophysics, materials, etc., are designed to run on parallel systems, meaning that the problem is divided into smaller tasks so more of the calculations can be done simultaneously to reduce the time to solution for the scientists. With the growing use of manycore processors, such as Intel’s Xeon and Xeon Phi processors which can which can have more than 60 cores in each processor, applications will need to have even more parallelism. Unless applications are modernized, they will not be able to take advantage of the greater computing performance promised by manycore processors.

The Berkeley Lab IPCC will be led by Nick Wright of the National Energy Research Scientific Computing Center (NERSC), and Bert de Jong and Hans Johansen of the Computational Research Division (CRD).

“Although manycore processors will significantly increase supercomputing performance, that’s only part of the equation,” said Wright, who leads NERSC’s Advanced Technologies Group. “To fully capitalize on this capability, we need to modernize the applications our user community uses to advance scientific discovery. Intel Parallel Computing Centers such as ours are helping to support the community to attack this problem.”

Optimizing applications for manycore is important for NERSC, which announced in April that its next-generation supercomputer will be a Cray XC supercomputer using Intel’s next-generation Xeon Phi processor, which will have more than 60 cores. NERSC is working with its 5,000 users to help them adapt their codes to the new system, which will is expected to be delivered in 2016.

The Berkeley Lab IPCC will focus on increasing the parallelism of two widely used applications: NWChem and CAM5, the Community Atmospheric Model. NWChem is a leading application for computational chemistry and CAM5, part of the Community Earth System Model, is widely used for studying global climate. Modernizing these codes to run on manycore architecture will enable the scientific community to pursue new frontiers in the fields of chemistry, materials and climate research. Because both NWChem and CAM5 are open source applications, any improvements made to them will be shared with the broader user community, maximizing the benefits of the project.

“Enabling NWChem to harness the full power of manycore processors allows our computational chemistry and materials community to accelerate scientific discovery, tackling more complex scientific problems and reducing the time researchers have to wait for simulations to complete,” says de Jong, who leads CRD’s Scientific Computing Group and is a lead developer of the NWChem software. “Advances made by our IPCC will be shared with the developer community, including lessons learned and making our code available as open source.”

The goal is to deliver enhanced versions of NWChem and CAM5 that at least double their overall performance on manycore machines of today. The research and development will be focused upon implementing greater amounts of parallelism in the codes, starting with simple modifications such as adding or modifying existing components and going as far as exploring new algorithmic approaches that can better exploit manycore architectures.

“The open-source scientific community truly depends on CAM components running effectively at NERSC. And climate scientists have always been early adopters of cutting-edge architectures,” says Johansen, a computational science researcher at Berkeley Lab. “With more performance and more parallelism, scientists can accelerate their simulations and more accurately represent atmospheric dynamics. This collaboration with Intel will help climate science developers leverage NERSC’s and Intel’s network of resources and manycore expertise.”

Berkeley Lab is an ideal collaborator for this project. The lab is home to NERSC, the U.S. Department of Energy’s most scientifically productive supercomputing center with more than 5,000 users running about 700 different applications. CRD is home to fundamental research programs in computer science, applied mathematics, and computational science where researchers investigate future directions in scientific computing and work to develop new tools and technologies to fully exploit the increasing power of supercomputers.

According to Wright, NERSC staff will conduct extensive outreach and training to share what they have learned with NERSC’s broader user community. This will supplement the training and outreach efforts NERSC is already doing to support its users on its current flagship supercomputer “Edison,” a Cray XC30 supercomputer that uses Intel Xeon “Ivybridge” processors. Additionally, the work will be part of the NERSC’s Application Readiness program to help prepare users for the expected 2016 delivery of “Cori,” a Cray XC supercomputer architected with Intel’s next-generation Xeon Phi processor (named “Knights Landing”), which will have more than 60 cores per processor.

Berkeley Lab is the first Department of Energy laboratory to be named an IPCC. Other IPCCs are located at leading universities and research institutions around the world.

About Berkeley Lab Computing Sciences

The Lawrence Berkeley National Laboratory (Berkeley Lab) Computing Sciences organization provides the computing and networking resources and expertise critical to advancing the Department of Energy’s research missions: developing new energy sources, improving energy efficiency, developing new materials and increasing our understanding of ourselves, our world and our universe. ESnet, the Energy Sciences Network, provides the high-bandwidth, reliable connections that link scientists at 40 DOE research sites to each other and to experimental facilities and supercomputing centers around the country. The National Energy Research Scientific Computing Center (NERSC) powers the discoveries of 5,500 scientists at national laboratories and universities, including those at Berkeley Lab’s Computational Research Division (CRD). CRD conducts research and development in mathematical modeling and simulation, algorithm design, data storage, management and analysis, computer system architecture and high-performance software implementation.

Source: Lawrence Berkeley National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

ASC18: Tough Applications & Tough Luck

May 17, 2018

The applications at the ASC18 Student Cluster Competition were tough. Tougher than the $3.99 steak special at your local greasy spoon restaurant. The apps are so tough that even Chuck Norris backs away from them slowly. Read more…

By Dan Olds

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and the technology challenges ahead. These discussions happened in Read more…

By Alex R. Larzelere

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

May 9, 2018

At Tabor Communications' annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages... Read more…

By the Editorial Team

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

  • arrow
  • Click Here for More Headlines
  • arrow
Share This