Berkeley Lab, Oak Ridge, NVIDIA Team Breaks Exaop Barrier With Deep Learning Application

October 8, 2018

Oct. 8, 2018 — A team of computational scientists from Lawrence Berkeley National Laboratory (Berkeley Lab) and Oak Ridge National Laboratory (ORNL) and engineers from NVIDIA has, for the first time, demonstrated an exascale-class deep learning application that has broken the exaop barrier.

Using a climate dataset from Berkeley Lab on ORNL’s Summit system at the Oak Ridge Leadership Computing Facility (OLCF), they trained a deep neural network to identify extreme weather patterns from high-resolution climate simulations. Summit is an IBM Power Systems AC922 supercomputer powered by more than 9,000 IBM POWER9 CPUs and 27,000 NVIDIA® Tesla® V100 Tensor Core GPUs. By tapping into the specialized NVIDIA Tensor Cores built into the GPUs at scale, the researchers achieved a peak performance of 1.13 exaops and a sustained performance of 0.999 – the fastest deep learning algorithm reported to date and an achievement that earned them a spot on this year’s list of finalists for the Gordon Bell Prize.

High-quality segmentation results produced by deep learning on climate datasets.

“This collaboration has produced a number of unique accomplishments,” said Prabhat, who leads the Data & Analytics Services team at Berkeley Lab’s National Energy Research Scientific Computing Center and is a co-author on the Gordon Bell submission. “It is the first example of deep learning architecture that has been able to solve segmentation problems in climate science, and in the field of deep learning, it is the first example of a real application that has broken the exascale barrier.”

These achievements were made possible through an innovative blend of hardware and software capabilities. On the hardware side, Summit has been designed to deliver 200 petaflops of high-precision computing performance and was recently named the fastest computer in the world, capable of performing more than three exaops (3 billion billion calculations) per second. The system features a hybrid architecture; each of its 4,608 compute nodes contains two IBM POWER9 CPUs and six NVIDIA Volta Tensor Core GPUs, all connected via the NVIDIA NVLink high-speed interconnect.The NVIDIA GPUs are a key factor in Summit’s performance, enabling up to 12 times higher peak teraflops for training and 6 times higher peak teraflops for inference in deep learning applications compared to its predecessor, the Tesla P100.

“Our partnering with Berkeley Lab and Oak Ridge National Laboratory showed the true potential of NVIDIA Tensor Core GPUs for AI and HPC applications,” said Michael Houston, senior distinguished engineer of deep learning at NVIDIA. “To make exascale a reality, our team tapped into the multi-precision capabilities packed into the thousands of NVIDIA Volta Tensor Core GPUs on Summit to achieve peak performance in training and inference in deep learning applications.”

Improved Scalability and Communication

On the software side, in addition to providing the climate dataset, the Berkeley Lab team developed pattern-recognition algorithms for training the DeepLabv3+ neural network to extract pixel-level classifications of extreme weather patterns, which could aid in the prediction of how extreme weather events are changing as the climate warms. According to Thorsten Kurth, an application performance specialist at NERSC who led this project, the team made modifications to DeepLabv3+ that improved the network’s scalability and communications capabilities and made the exaops achievement possible. This included tweaking the network to train it to extract pixel-level features and per-pixel classification and improve node-to-node communication.

“What is impressive about this effort is that we could scale a high-productivity framework like TensorFlow, which is technically designed for rapid prototyping on small to medium scales, to 4,560 nodes on Summit,” he said. “With a number of performance enhancements, we were able to get the framework to run on nearly the entire supercomputer and achieve exaop-level performance, which to my knowledge is the best achieved so far in a tightly coupled application.”

Other innovations included high-speed parallel data staging, an optimized data ingestion pipeline and multi-channel segmentation. Traditional image segmentation tasks work on three-channel red/blue/green images. But scientific datasets often comprise many channels; in climate, for example, these can include temperature, wind speeds, pressure values and humidity. By running the optimized neural network on Summit, the additional computational capabilities allowed the use of all 16 available channels, which dramatically improved the accuracy of the models.

“We have shown that we can apply deep-learning methods for pixel-level segmentation on climate data, and potentially on other scientific domains,” said Prabhat. “More generally, our project has laid the groundwork for exascale deep learning for science, as well as commercial applications.”

In addition to Prabhat, Houston and Kurth, the research team included Jack Deslippe, Mayur Mudigonda and Ankur Mahesh of Berkeley Lab; Michael Matheson of ORNL; and Sean Treichler, Joshua Romero, Nathan Luehr, Everett Phillips and Massimiliano Fatica of NVIDIA.

Established more than three decades ago by the Association for Computing Machinery, the Gordon Bell award recognizes outstanding achievement in the field of computing for applications in science, engineering and large-scale data science. This year’s winner will be announced at SC18 in November in Dallas, TX.

NERSC and OLCF are both DOE Office of Science User Facilities.


Source: Kathy Kincade, Berkeley Lab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in its cloud service.  Google claimed the CPU is based on cut Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire