Berkeley Lab Researchers Lead Development of Workflow to Predict Ground Movement

October 9, 2017

Oct. 9, 2017 — With emerging exascale supercomputers, researchers will soon be able to accurately simulate the ground motions of regional earthquakes quickly and in unprecedented detail, as well as predict how these movements will impact energy infrastructure—from the electric grid to local power plants—and scientific research facilities.

Currently, an interdisciplinary team of researchers from the Department of Energy’s (DOE’s) Lawrence Berkeley (Berkeley Lab) and Lawrence Livermore (LLNL) national laboratories, as well as the University of California at Davis are building the first-ever end-to-end simulation code to precisely capture the geology and physics of regional earthquakes, and how the shaking impacts buildings. This work is part of the DOE’s Exascale Computing Project (ECP), which aims to maximize the benefits of exascale—future supercomputers that will be 50 times faster than our nation’s most powerful system today—for U.S. economic competitiveness, national security and scientific discovery.

Transforming hazard into risk: Researchers at Berkeley Lab, LLNL and UC Davis are utilizing ground motion estimates from a regional-scale geophysics model to drive infrastructure assessments. (Image Courtesy of David McCallen)

“Due to computing limitations, current geophysics simulations at the regional level typically resolve ground motions at 1-2 hertz (vibrations per second). Ultimately, we’d like to have motion estimates on the order of 5-10 hertz to accurately capture the dynamic response for a wide range of infrastructure,” says David McCallen, who leads an ECP-supported effort called High Performance, Multidisciplinary Simulations for Regional Scale Seismic Hazard and Risk Assessments. He’s also a guest scientist in Berkeley Lab’s Earth and Environmental Sciences Area.

One of the most important variables that affect earthquake damage to buildings is seismic wave frequency, or the rate at which an earthquake wave repeats each second. Buildings and structures respond differently to certain frequencies. Large structures like skyscrapers, bridges, and highway overpasses are sensitive to low frequency shaking, whereas smaller structures like homes are more likely to be damaged by high frequency shaking, which ranges from 2 to 10 hertz and above. McCallen notes that simulations of high frequency earthquakes are more computationally demanding and will require exascale computers.

In preparation for exascale, McCallen is working with Hans Johansen, a researcher in Berkeley Lab’s Computational Research Division (CRD), and others to update the existing SW4 code—which simulates seismic wave propagation—to take advantage of the latest supercomputers, like the National Energy Research Scientific Computing Center’s (NERSC’s) Cori system. This manycore system contains 68 processor cores per chip, nearly 10,000 nodes and new types of memory. NERSC is a DOE Office of Science national user facility operated by Berkeley Lab.  The SW4 code was developed by a team of researchers at LLNL, led by Anders Petersson, who is also involved in the exascale effort.

With recent updates to SW4, the collaboration successfully simulated a 6.5 magnitude earthquake on California’s Hayward fault at 3-hertz on NERSC’s Cori supercomputer in about 12 hours with 2,048 Knights Landing nodes. This first-of-a-kind simulation also captured the impact of this ground movement on buildings within a 100-square kilometer (km) radius of the rupture, as well as 30km underground. With future exascale systems, the researchers hope to run the same model at 5-10 hertz resolution in approximately five hours or less.

“Ultimately, we’d like to get to a much larger domain, higher frequency resolution and speed up our simulation time, ” says McCallen. “We know that the manner in which a fault ruptures is an important factor in determining how buildings react to the shaking, and because we don’t know how the Hayward fault will rupture or the precise geology of the Bay Area, we need to run many simulations to explore different scenarios. Speeding up our simulations on exascale systems will allow us to do that.”

This work was recently published in the Institute of Electrical and Electronics Engineers (IEEE) Computer Society’s Computers in Science and Engineering.

Predicting Earthquakes: Past, Present and Future 

Historically, researchers have taken an empirical approach to estimating ground motions and how the shaking stresses structures. So to predict how an earthquake would affect infrastructure in the San Francisco region, researchers might look at a past event that was about the same size—it might even have happened somewhere else—and use those observations to predict ground motion in San Francisco. Then they’d select some parameters from those simulations based on empirical analysis and surmise how various buildings may be affected.

“It is no surprise that there are certain instances where this method doesn’t work so well,” says McCallen. “Every single site is different—the geologic makeup may vary, faults may be oriented differently and so on. So our approach is to apply geophysical research to supercomputer simulations and accurately model the underlying physics of these processes.”

To achieve this, the tool under development by the project team employs a discretization technique that divides the Earth into billions of zones. Each zone is characterized with a set of geologic properties. Then, simulations calculate the surface motion for each zone. With an accurate understanding of surface motion in a given zone, researchers also get more precise estimates for how a building will be affected by shaking.

The team’s most recent simulations at NERSC divided a 100km x 100km x 30km region into 60 billion zones. By simulating 30km beneath the rupture site, the team can capture how surface-layer geology affects ground movements and buildings.

Eventually, the researchers would like to get their models tuned up to do hazard assessments. As Pacific Gas & Electric (PG&E) begins to implement a very dense array of accelerometers into their SmartMeters—a system of sensors that collects electric and natural gas use data from homes and businesses to help the customer understand and reduce their energy use—McCallen is working with the utility company about potentially using that data to get a more accurate understanding of how the ground is actually moving in different geologic regions.

“The San Francisco Bay is an extremely hazardous area from a seismic standpoint and the Hayward fault is probably one of the most potentially risky faults in the country,” says McCallen. “We chose to model this area because there is a lot of information about the geology here, so our models are reasonably well-constrained by real data. And, if we can accurately measure the risk and hazards in the Bay Area, it’ll have a big impact.”

He notes that the current seismic hazard assessment for Northern California identifies the Hayward Fault as the most likely to rupture with a magnitude 6.7 or greater event before 2044. Simulations of ground motions from large—magnitude 7.0 or more—earthquakes require domains on the order of 100-500 km and resolution on the order of about one to five meters, which translates into hundreds of billions of grid points. As the researchers aim to model even higher frequency motions between 5 to 10 hertz, they will need denser computational grids and finer time-steps, which will drive up computational demands. The only way to ultimately achieve these simulations is to exploit exascale computing, McCallen says.

In addition to leading an ECP project, McCallen is also a Berkeley lab research affiliate and Associate Vice President at the University of California Office of the President.

This work was done with support from the Exascale Computing Project, a collaborative effort between the DOE’s Office of Science and National Nuclear Security Agency. NERSC is a DOE Office of Science User Facility.

About NERSC and Berkeley Lab

The National Energy Research Scientific Computing Center (NERSC) is a U.S. Department of Energy Office of Science User Facility that serves as the primary high-performance computing center for scientific research sponsored by the Office of Science. Located at Lawrence Berkeley National Laboratory, the NERSC Center serves more than 6,000 scientists at national laboratories and universities researching a wide range of problems in combustion, climate modeling, fusion energy, materials science, physics, chemistry, computational biology, and other disciplines. Berkeley Lab is a DOE national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the U.S. DOE Office of Science. »Learn more about computing sciences at Berkeley Lab.


Source: NERSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This