Berkeley Lab Researchers Target Chem Code for Knights Landing

March 27, 2017

OpenMP optimized NWChem AIMD plane wave code is demonstrated to run faster on a single Intel Knights Landing node when compared to a conventional Intel Haswell node. The simulation run consists of 64 water molecule.

BERKELEY, Calif., March 27, 2017 — A team of researchers at the Lawrence Berkeley National Laboratory (Berkeley Lab), Pacific Northwest National Laboratory (PNNL) and Intel are working hard to make sure that computational chemists are prepared to compute efficiently on next-generation exascale machines. Recently, they achieved a milestone, successfully adding thread-level parallelism on top of MPI-level parallelism in the planewave density functional theory method within the popular software suite NWChem.

“Planewave codes are useful for solution chemistry and materials science; they allow us to look at the structure, coordination, reactions and thermodynamics of complex dynamical chemical processes in solutions and on surfaces,” says Bert de Jong, a computational chemist in the Computational Research Division (CRD) at Berkeley Lab.

Developed approximately 20 years ago, the open-source NWChem software was designed to solve challenging chemical and biological problems using large-scale parallel ab initio, or first principle calculations.  De Jong and his colleagues will present a paper on this latest parallelization work at the May 29-June 2 IEEE International Parallel and Distributed Processing Symposium in Orlando, Florida.

Multicore vs. “Manycore”: Preparing Science for Next-Generation HPC

Since the 1960s, the semiconductor industry has looked to Moore’s Law—the observation that the number of transistors on a microprocessor chip doubles about every two years—to set targets for their research and development. As a result, chip performance sped up considerably, eventually giving rise to laptop computers, smartphones and the Internet. But like all good things, this couldn’t last.

As more and more silicon circuits are packed into the same small area, an increasingly unwieldy amount of heat is generated.  So about a decade ago, microprocessor designers latched onto the idea of multicore architectures—putting multiple processors called “cores” on a chip—similar to getting five people to carry your five bags of groceries home, rather than trying to get one stronger person to go five times faster and making separate trips for each bag.

Supercomputing took advantage of these multicore designs, but today they are still proving too power-hungry, and instead designers are using a larger number of smaller, simpler processor cores in the newest supercomputers. This “manycore” approach—akin to a small platoon of walkers rather than a few runners—will be taken to an extreme in future exaflop supercomputers.  But achieving a high level of performance on these manycore architectures requires rewriting software, incorporating intensive thread and data-level parallelism and careful orchestration of data movement. In the grocery analogy, this addresses who will carry each item, can the heavier ones be divided into smaller parts, and should items be handed around mid-way to avoid overtiring anyone—more like a squad of cool, slow-walking, collaborative jugglers.

Getting Up to Speed on Manycore

The first step to ensuring that their codes will perform efficiently on future exascale supercomputers is to make sure that they are taking full advantage of manycore architectures that are being deployed. De Jong and his colleagues have been working for over a year to get the NWChem planewave code optimized and ready for science, just in time for the arrival of NERSC latest supercomputer Cori.

The recently installed Cori system at the Department of Energy’s (DOE’s) National Energy Research Scientific Computing Center (NERSC) reflects one of these manycore designs. It contains about 9,300 Intel Xeon Phi (Knights Landing) processors and according to the November, 2016 Top500 list, is the largest system of its kind, also representing NERSC’s move towards exascale.  de Jong and his colleagues were able to gain early access to Cori through the NERSC Exascale Science Applications Program and the new NWChem code has been shown to perform well on the new machine.

According to de Jong, the NWChem planewave methods primarily comprise fast Fourier transform (FFT) algorithms and matrix multiplications of tall-skinny matrix products. Because current Intel math libraries don’t efficiently solve the tall-skinny matrix products in parallel, Mathias Jacquelin, a scientist in CRD’s Scalable Solvers Group, developed a parallel algorithm and optimized manycore implementation for calculating these matrices and then integrated that into the existing planewave codes.

When trying to squeeze the most performance from new architectures, it is helpful to understand how much headroom is left—how close are you to computing or data movement limits of the hardware, and when will you reach the point of diminishing returns in tuning an application’s performance. For this, Jacquelin turned to a tool known as a Roofline Model, developed several years ago by CRD computer scientist Sam Williams.

Jacquelin developed an analysis of matrix factorization routine within a roofline model for the Knights Landing nodes. In a test case that simulated a solution with 64 water molecules, the team found that their code easily scaled up to all 68 cores available in a single massively parallel Intel Xeon Phi Knights Landing node. They also found that the new, completely threaded version of the planewave code performed three times faster on this manycore architecture than on current generations of the Intel Xeon cores, which will allow computational chemists to model larger, more complex chemical systems in less time.

“Our achievement is especially good news for researchers who use NWChem because it means that they can exploit multicore architectures of current and future supercomputers in an efficient way,” says Jacquelin. “Because there are other areas of chemistry that also rely on tall-skinny matrices, I believe that our work could potentially be applied to those problems as well.”

“Getting this level of performance on the Knights Landing architecture is a real accomplishment and it took a team effort to get there,” says de Jong. “Next, we will be focusing on running some large scale simulations with these codes.”

This work was done with support from DOE’s Office of Science and Intel’s Parallel Computing Center at Berkeley Lab. NERSC is a DOE Office of Science User Facility. In addition to de Jong and Jacquelin, Eric Bylaska of PNNL was also a co-author on the paper.


Source: Linda Vu, Lawrence Berkeley National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Watsonx Brings AI Visibility to Banking Systems

September 21, 2023

A new set of AI-based code conversion tools is available with IBM watsonx. Before introducing the new "watsonx," let's talk about the previous generation Watson, perhaps better known as "Jeopardy!-Watson." The origi Read more…

Researchers Advance Topological Superconductors for Quantum Computing

September 21, 2023

Quantum computers process information using quantum bits, or qubits, based on fragile, short-lived quantum mechanical states. To make qubits robust and tailor them for applications, researchers from the Department of Ene Read more…

Fortran: Still Compiling After All These Years

September 20, 2023

A recent article appearing in EDN (Electrical Design News) points out that on this day, September 20, 1954, the first Fortran program ran on a mainframe computer. Originally developed by IBM, Fortran (or FORmula TRANslat Read more…

Intel’s Gelsinger Lays Out Vision and Map at Innovation 2023 Conference

September 20, 2023

Intel’s sprawling, optimistic vision for the future was on full display yesterday in CEO Pat Gelsinger’s opening keynote at the Intel Innovation 2023 conference being held in San Jose. While technical details were sc Read more…

Intel Showcases “AI Everywhere” Strategy in MLPerf Inferencing v3.1

September 18, 2023

Intel used the latest MLPerf Inference (version 3.1) results as a platform to reinforce its developing “AI Everywhere” vision, which rests upon 4th gen Xeon CPUs and Gaudi2 (Habana) accelerators. Both fared well on t Read more…

AWS Solution Channel

Shutterstock 1679562793

How Maxar Builds Short Duration ‘Bursty’ HPC Workloads on AWS at Scale

Introduction

High performance computing (HPC) has been key to solving the most complex problems in every industry and has been steadily changing the way we work and live. Read more…

QCT Solution Channel

QCT and Intel Codeveloped QCT DevCloud Program to Jumpstart HPC and AI Development

Organizations and developers face a variety of issues in developing and testing HPC and AI applications. Challenges they face can range from simply having access to a wide variety of hardware, frameworks, and toolkits to time spent on installation, development, testing, and troubleshooting which can lead to increases in cost. Read more…

Survey: Majority of US Workers Are Already Using Generative AI Tools, But Company Policies Trail Behind

September 18, 2023

A new survey from the Conference Board indicates that More than half of US employees are already using generative AI tools, at least occasionally, to accomplish work-related tasks. Yet some three-quarters of companies st Read more…

Watsonx Brings AI Visibility to Banking Systems

September 21, 2023

A new set of AI-based code conversion tools is available with IBM watsonx. Before introducing the new "watsonx," let's talk about the previous generation Watson Read more…

Intel’s Gelsinger Lays Out Vision and Map at Innovation 2023 Conference

September 20, 2023

Intel’s sprawling, optimistic vision for the future was on full display yesterday in CEO Pat Gelsinger’s opening keynote at the Intel Innovation 2023 confer Read more…

Intel Showcases “AI Everywhere” Strategy in MLPerf Inferencing v3.1

September 18, 2023

Intel used the latest MLPerf Inference (version 3.1) results as a platform to reinforce its developing “AI Everywhere” vision, which rests upon 4th gen Xeon Read more…

China’s Quiet Journey into Exascale Computing

September 17, 2023

As reported in the South China Morning Post HPC pioneer Jack Dongarra mentioned the lack of benchmarks from recent HPC systems built by China. “It’s a we Read more…

Nvidia Releasing Open-Source Optimized Tensor RT-LLM Runtime with Commercial Foundational AI Models to Follow Later This Year

September 14, 2023

Nvidia's large-language models will become generally available later this year, the company confirmed. Organizations widely rely on Nvidia's graphics process Read more…

MLPerf Releases Latest Inference Results and New Storage Benchmark

September 13, 2023

MLCommons this week issued the results of its latest MLPerf Inference (v3.1) benchmark exercise. Nvidia was again the top performing accelerator, but Intel (Xeo Read more…

Need Some H100 GPUs? Nvidia is Listening

September 12, 2023

During a recent earnings call, Tesla CEO Elon Musk, the world's richest man, summed up the shortage of Nvidia enterprise GPUs in a few sentences.  "We're us Read more…

Intel Getting Squeezed and Benefiting from Nvidia GPU Shortages

September 10, 2023

The shortage of Nvidia's GPUs has customers searching for scrap heap to kickstart makeshift AI projects, and Intel is benefitting from it. Customers seeking qui Read more…

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

Leading Solution Providers

Contributors

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

ISC 2023 Booth Videos

Cornelis Networks @ ISC23
Dell Technologies @ ISC23
Intel @ ISC23
Lenovo @ ISC23
Microsoft @ ISC23
ISC23 Playlist
  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire