Berkeley Lab Researchers Target Chem Code for Knights Landing

March 27, 2017

OpenMP optimized NWChem AIMD plane wave code is demonstrated to run faster on a single Intel Knights Landing node when compared to a conventional Intel Haswell node. The simulation run consists of 64 water molecule.

BERKELEY, Calif., March 27, 2017 — A team of researchers at the Lawrence Berkeley National Laboratory (Berkeley Lab), Pacific Northwest National Laboratory (PNNL) and Intel are working hard to make sure that computational chemists are prepared to compute efficiently on next-generation exascale machines. Recently, they achieved a milestone, successfully adding thread-level parallelism on top of MPI-level parallelism in the planewave density functional theory method within the popular software suite NWChem.

“Planewave codes are useful for solution chemistry and materials science; they allow us to look at the structure, coordination, reactions and thermodynamics of complex dynamical chemical processes in solutions and on surfaces,” says Bert de Jong, a computational chemist in the Computational Research Division (CRD) at Berkeley Lab.

Developed approximately 20 years ago, the open-source NWChem software was designed to solve challenging chemical and biological problems using large-scale parallel ab initio, or first principle calculations.  De Jong and his colleagues will present a paper on this latest parallelization work at the May 29-June 2 IEEE International Parallel and Distributed Processing Symposium in Orlando, Florida.

Multicore vs. “Manycore”: Preparing Science for Next-Generation HPC

Since the 1960s, the semiconductor industry has looked to Moore’s Law—the observation that the number of transistors on a microprocessor chip doubles about every two years—to set targets for their research and development. As a result, chip performance sped up considerably, eventually giving rise to laptop computers, smartphones and the Internet. But like all good things, this couldn’t last.

As more and more silicon circuits are packed into the same small area, an increasingly unwieldy amount of heat is generated.  So about a decade ago, microprocessor designers latched onto the idea of multicore architectures—putting multiple processors called “cores” on a chip—similar to getting five people to carry your five bags of groceries home, rather than trying to get one stronger person to go five times faster and making separate trips for each bag.

Supercomputing took advantage of these multicore designs, but today they are still proving too power-hungry, and instead designers are using a larger number of smaller, simpler processor cores in the newest supercomputers. This “manycore” approach—akin to a small platoon of walkers rather than a few runners—will be taken to an extreme in future exaflop supercomputers.  But achieving a high level of performance on these manycore architectures requires rewriting software, incorporating intensive thread and data-level parallelism and careful orchestration of data movement. In the grocery analogy, this addresses who will carry each item, can the heavier ones be divided into smaller parts, and should items be handed around mid-way to avoid overtiring anyone—more like a squad of cool, slow-walking, collaborative jugglers.

Getting Up to Speed on Manycore

The first step to ensuring that their codes will perform efficiently on future exascale supercomputers is to make sure that they are taking full advantage of manycore architectures that are being deployed. De Jong and his colleagues have been working for over a year to get the NWChem planewave code optimized and ready for science, just in time for the arrival of NERSC latest supercomputer Cori.

The recently installed Cori system at the Department of Energy’s (DOE’s) National Energy Research Scientific Computing Center (NERSC) reflects one of these manycore designs. It contains about 9,300 Intel Xeon Phi (Knights Landing) processors and according to the November, 2016 Top500 list, is the largest system of its kind, also representing NERSC’s move towards exascale.  de Jong and his colleagues were able to gain early access to Cori through the NERSC Exascale Science Applications Program and the new NWChem code has been shown to perform well on the new machine.

According to de Jong, the NWChem planewave methods primarily comprise fast Fourier transform (FFT) algorithms and matrix multiplications of tall-skinny matrix products. Because current Intel math libraries don’t efficiently solve the tall-skinny matrix products in parallel, Mathias Jacquelin, a scientist in CRD’s Scalable Solvers Group, developed a parallel algorithm and optimized manycore implementation for calculating these matrices and then integrated that into the existing planewave codes.

When trying to squeeze the most performance from new architectures, it is helpful to understand how much headroom is left—how close are you to computing or data movement limits of the hardware, and when will you reach the point of diminishing returns in tuning an application’s performance. For this, Jacquelin turned to a tool known as a Roofline Model, developed several years ago by CRD computer scientist Sam Williams.

Jacquelin developed an analysis of matrix factorization routine within a roofline model for the Knights Landing nodes. In a test case that simulated a solution with 64 water molecules, the team found that their code easily scaled up to all 68 cores available in a single massively parallel Intel Xeon Phi Knights Landing node. They also found that the new, completely threaded version of the planewave code performed three times faster on this manycore architecture than on current generations of the Intel Xeon cores, which will allow computational chemists to model larger, more complex chemical systems in less time.

“Our achievement is especially good news for researchers who use NWChem because it means that they can exploit multicore architectures of current and future supercomputers in an efficient way,” says Jacquelin. “Because there are other areas of chemistry that also rely on tall-skinny matrices, I believe that our work could potentially be applied to those problems as well.”

“Getting this level of performance on the Knights Landing architecture is a real accomplishment and it took a team effort to get there,” says de Jong. “Next, we will be focusing on running some large scale simulations with these codes.”

This work was done with support from DOE’s Office of Science and Intel’s Parallel Computing Center at Berkeley Lab. NERSC is a DOE Office of Science User Facility. In addition to de Jong and Jacquelin, Eric Bylaska of PNNL was also a co-author on the paper.


Source: Linda Vu, Lawrence Berkeley National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Simulating Car Crashes with Supercomputers – and Lego

October 18, 2019

It’s an experiment many of us have carried out at home: crashing two Lego creations into each other, bricks flying everywhere. But for the researchers at the General German Automobile Club (ADAC) – which is comparabl Read more…

By Oliver Peckham

NASA Uses Deep Learning to Monitor Solar Weather

October 17, 2019

Solar flares may be best-known as sci-fi MacGuffins, but those flares – and other space weather – can have serious impacts on not only spacecraft and satellites, but also on Earth-based systems such as radio communic Read more…

By Oliver Peckham

Federated Learning Applied to Cancer Research

October 17, 2019

The ability to share and analyze data while protecting patient privacy is giving medical researchers a new tool in their efforts to use what one vendor calls “federated learning” to train models based on diverse data Read more…

By George Leopold

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departure from past practice, the NSB has divided the 2020 S&E Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

How Do We Power the New Industrial Revolution?

[Attend the IBM LSF, HPC & AI User Group Meeting at SC19 in Denver on November 19!]

Almost everyone is talking about artificial intelligence (AI). Read more…

What’s New in HPC Research: Rabies, Smog, Robots & More

October 14, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departu Read more…

By John Russell

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve Read more…

By Staff report

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Optimizing Offshore Wind Farms with Supercomputer Simulations

October 9, 2019

Offshore wind farms offer a number of benefits; many of the areas with the strongest winds are located offshore, and siting wind farms offshore ameliorates many of the land use concerns associated with onshore wind farms. Some estimates say that, if leveraged, offshore wind power... Read more…

By Oliver Peckham

Harvard Deploys Cannon, New Lenovo Water-Cooled HPC Cluster

October 9, 2019

Harvard's Faculty of Arts & Sciences Research Computing (FASRC) center announced a refresh of their primary HPC resource. The new cluster, called Cannon after the pioneering American astronomer Annie Jump Cannon, is supplied by Lenovo... Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This