BGI Genomics, Intel, Lenovo Form Research Alliance to Decode COVID-19

March 18, 2020

March 18, 2020 — Billions of coronavirus particles can swarm through just one drop of respiratory fluid. Each of those particles—many with subtle variations—contains some 30,000 DNA bases. That staggering biological density is buried in the viral genome, which defines every aspect of the virus, from virulence to transmissibility. Researchers in China and across the globe already sequenced a handful of COVID-19 genomes, arming clinicians and scientists with the essential foundation to begin fighting back.

But mapping the genomes among circulating coronaviruses is just the beginning. Exponentially more challenging, and equally important to understanding this pandemic, is sequencing the genomes of the people infected. Like the virus, questions swarm: Why is this virus more contagious than others? What mechanisms lead to pneumonia and hospitalization in some and a mild cough in others? How will individual patients respond to different treatments or vaccines? The answers are written somewhere in the interaction between an individual’s genome and the viral strains infecting them. Once mapped, that DNA-driven interplay points the way to diagnostics, vaccines, and immunotherapies.

Researchers at BGI Genomics—who also developed the first diagnostic test kits for the disease—and others around the world are engaging in the painstaking process of population-scale genomics for COVID-19. To engineer an effective vaccine or other protective measures, scientists need massive datasets to pinpoint potentially protective genetic differences. Working at that scale generates terabytes to petabytes of data—too much to process without large-scale analyses supported by high-performance computing (HPC).

The speed of genome sequencing has risen in stride with the rapid acceleration of computational power. A process that initially spanned more than a decade and cost billions for a single genome can now be executed in a matter of hours on clusters of supercomputers running fully optimized hardware architecture. While researchers stress that the road to a vaccine is likely very long, an unprecedented array of tools may accelerate timelines.

“BGI Genomics has sequenced hundreds of clinical samples to analyze and distinguish the complications of the infection,” said Xiangqian Jin, CIO of BGI Genomics.  “Having access to the latest high-performance computing and genomics analytics technologies are important factors in improving analysis efficiency.”

BGI Genomics researcher working on the T7 sequencer. Image courtesy of Lenovo.

To support BGI’s efforts and empower researchers leading the battle against coronavirus, Intel and Lenovo partnered to donate a dedicated supercomputer cluster as well as the software and hardware expertise to maximize its use.

“We are humbled to contribute to the critical efforts of genomics researchers and healthcare providers on the front line of the fight against the novel coronavirus,” said Mileidy Giraldo, Ph.D., Global Lead for Genomics R&D at Lenovo. Dr. Giraldo spent years as a bioinformatics scientist at NIH contributing to vaccine design for infectious diseases and now helps bridge the gap between scientists and engineers developing hardware and software for life sciences. “We are donating equipment and expertise, but the real breakthrough, the real contribution will come from what the researchers at BGI will accomplish and what the rest of the biomedical community will in turn learn and develop based on BGI’s findings.”

Translating the Genome “Book”

Imagine if the genome of every human being on earth could be represented by their own thousand-page book. This strange text would use only four letters: AGCT. The limited alphabet—signifying the base pairings in DNA—provides the instructions for every single feature that makes you who you are: hair color, height, and even susceptibility to a disease like COVID-19. Most of those instructions are spelled identically person to person, but all-important variations are hidden across a handful of pages.

To understand how a feature like susceptibility to infection will manifest in a given person, researchers must identify the precise pages (i.e. the genes) giving the relevant instructions. This can only be done by comparing those pages across as many patients as possible—pinpointing useful commonalities—and then leveraging data linking those variations to susceptibility or resistance to infection.

This tremendously difficult task of genomics translation and interpretation sits at the core of scientists’ battle against the novel coronavirus. Decoding the complex interplay between the relevant human gene products and the spike-crowned virus can reveal ways to inhibit or completely shut down the process. Scientists will also hunt for common pages in the coronavirus’s own book—regions of the genome where the virus cannot tolerate mutations or variations. Those regions point to exploitable weaknesses—a kind of Achilles’ heel that could open the virus to an effective vaccine or treatment.

Engineering an Effective Vaccine

There’s a kernel of truth to the trope in outbreak movies where scientists desperately hunt for one person immune to the disease. Natural immunities can, in fact, provide key insights to engineer an effective vaccine.

“What’s missing in those movies is a realistic time scale,” Dr. Giraldo said. “Movies don’t show all the genomics work, spanning months to years, needed to compare large datasets within and across patients to create a candidate vaccine. Then, the movies ignore the time involved in clinical trials, testing many tweaks of a vaccine until we find one with high efficacy and low risk.”

A rendering of the coronavirus revealing the ring of crown-like spikes that inspired the virus name (corona means “crown” in Latin). Image courtesy of Lenovo.

Consider two patient reactions to the virus: one develops life-threating pneumonia and the other gets only a passing cough. What underlying differences explain this disparity? A compromised immune system? A genetic predisposition? Past exposure to a different illness? Age? Sex? Nutrition? The dominance of one strain of the virus? Answering those questions for just two patients is already a challenge—applied to thousands, the complexity soars.

But only a massive amount of data can even begin to sift through the countless variations in both genes and environmental influences. The more clinical and genomic data scientists have, the better they can isolate the key commonality across patients.

Population-scale genomics provides a path composed of billions upon billions of data points.  With the novel coronavirus, scientists hope to compare DNA across tens of thousands of diagnosed patients. This is an overwhelming computational challenge, one requiring the processing power and data storage capacity available only inside an HPC environment.

Optimizing the HPC Recipe

Remember that genome book? The one that took an entire decade to read the first time? Genomics researchers worldwide generally analyze an entire genome in about 150 hours — a fantastic leap, certainly, but still unequal to the speed demanded by the COVID-19 pandemic. Even isolating and sequencing the bits that code for protein and propagate viruses—a handful of pages called exomes—usually takes at least 4 hours.

Now, BGI researchers can access HPC clusters optimized to assemble and analyze hundreds of whole genomes and thousands of exomes.

“With this donation, our hope is to extend the existing resources BGI researchers already have at their disposal so that the biomedical community can do more and get there faster, Dr. Giraldo said. “I can’t think of a better example of using technology to tackle humanity’s greatest challenges than one where a multidisciplinary team of scientists, clinicians, and engineers have come together to pull their combined brain power to fight back Coronavirus global pandemic.”

Building on a powerful solution first developed by Intel, Lenovo developed an optimized hardware and system architecture to radically reduce those genome processing times. Lenovo’s solution for population-level genomics—the Genomics Optimization and Scalability Tool (GOAST)—leverages the Broad Institute’s open-source Genome Analysis Toolkit (GATK) software on an optimized hardware recipe. Identifying the right optimizations and hardware building blocks to accelerate genomics required testing hundreds of HPC configurations.

“The year-long process focused entirely on the real needs of scientists,” Giraldo said. “Researchers’ time is better spent by focusing on the science; not on the underlying hardware. So we performed a systematic permutation test of all the hardware building blocks available to us to find the right hardware recipe that reduced execution time. Our tests used the same software used by researchers in the lab to make this tool immediately deployable.”

The results? A whole human genome sequenced in five and a half hours, and exomes in just four minutes—up to a 40-fold speed-up. Supported by a dedicated supercomputing cluster, BGI researchers will soon be hard at work using GOAST to study COVID-19 on the long road to a vaccine.

In the short term, predicting virulence based on a patient’s dominant strains may also help hospitals more effectively triage patients—knowing who is at greatest risk as soon as they reach a clinic and what therapies may be effective. In the long term, even beyond a vaccine, the COVID-19 genome contains hints of its source. Knowing its genomic history and point of origin can help predict and prevent future outbreaks.

All in all, a staggeringly dense and high-stakes puzzle to solve.

“The equipment and technology will speed up the rapid identification of COVID-19 infected people and the study of virus genome characteristics, providing strong support for accurate diagnosis, treatment and epidemic prevention of COVID-19,” Jin said.

About Lenovo

Lenovo is a US$50 billion Fortune Global 500 company, with 57,000 employees and operating in 180 markets around the world. Focused on a bold vision to deliver smarter technology for all, we are developing world-changing technologies that create a more inclusive, trustworthy and sustainable digital society. By designing, engineering and building the world’s most complete portfolio of smart devices and infrastructure, we’re also leading an Intelligent Transformation to create better experiences and opportunities for millions of customers around the world. To find out more, visit https://www.lenovo.com.


Source: Lenovo 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire