Bill Dorland Named Associate Director of Computational Science at PPPL

August 18, 2020

Aug. 18, 2020 — Bill Dorland, a renowned computational physicist at the University of Maryland has been named to the new position of associate laboratory director for computational science at the Princeton Plasma Physics Laboratory (PPPL).

Bill Dorland, a renowned computational physicist at the University of Maryland has been named to the new position of associate laboratory director for computational science at PPPL. Image courtesy of Alison Harbaugh, PPPL.

Dorland has extensive background in developing computer codes to model complex plasma physics processes. He won the U.S. Department of Energy’s Ernest Orlando Lawrence Award in 2009 for his work on a computer code designed to understand turbulence, the chaotic swirls and eddies in plasma that can disrupt fusion reactions. Dorland will lead PPPL’s effort to develop computational science into a new core capability that provides high-performance computing support to understand and predict fusion plasma physics, design fusion facilities, and simulate complex plasma phenomena.

Steve Cowley, PPPL director, said Dorland has an excellent background to lead the effort to develop computational science as a major research area at PPPL. “I am delighted to have recruited Bill Dorland to join our team,” Cowley said. “Bill played a central role in the development of plasma turbulence simulations for which he was awarded the DOE prestigious E.O. Lawrence Award — it is a stunning achievement. He is also a strategic thinker who has a compelling vision for PPPL’s future in scientific computing.”

Jon Menard, deputy director for research, said Dorland’s expertise and reputation in the physics community makes him an excellent fit for the new position. He noted that Dorland has a broad research background that encompasses not only plasma physics but also astrophysics. “He has excellent computational experience and has led major research groups at the University of Maryland,” he said. “He knows the community well and quite broadly…and he’s an excellent person to lead this effort from both a technical and strategic standpoint.”

“Princeton is the premier national lab in fusion energy and the premier plasma physics program in the U.S., so the invitation to be part of that was very exciting,” Dorland said. “PPPL has decades of success in computational physics, science, and engineering. This is more about reenergizing that capability.”

Computer codes are used to understand everything from the shape of the plasma to how it absorbs and releases energy, and those physics problems are too complex to solve through linear equations. Having a research area devoted to computational physics would allow researchers to work with a team to solve problems through models that can predict plasma behavior. That team would include not only computational physicists but also members of the information technology staff who specialize in coding, Dorland said. “Instead of making one-of-a-kind beautiful automobiles, “he said, “we’re going to build a production line. We’re going to bring mass computing to scientific computing at PPPL.”

Computational science is one of two new core capabilities being developed as part of Cowley’s plan to expand PPPL’s research mission to become a multi-purpose laboratory. The other new core capability is the development of a research program focused on low temperature plasmas in microelectronics and quantum computing. “We want to organize the Lab so we can support a diversified mission and help to model what the industries of the future need to be successful,” Cowley said.

A new computer cluster

Dorland is working with Menard and Princeton University to build a computer cluster dedicated to computational physics. The cluster would be a supercomputer that would be used to develop more computer codes and utilize existing codes to solve more research problems. Last year, Princeton University purchased Traverse, a supercomputer for its High Performance Computing Research Center that has expanded resources for PPPL researchers and students doing computational physics aimed at developing computer codes to be used in tomorrow’s exascale computing.

The computer cluster for computational physics has a similar architecture to the National Energy Research Scientific Computing Center’s Perlmutter supercomputer. It would make use of codes developed at PPPL that are used at fusion facilities worldwide, including the TRANSP code, which is used for whole device modeling of fusion reactors, and codes such as M3D-C1 and GKeyll used for simulating fusion plasma stability and plasma turbulence, respectively. The supercomputer could be installed as early as this calendar year on the Forrestal campus and would be available to both PPPL and University researchers.

PPPL has also been a leader of the fusion Exascale Computing Project Whole Device Modeling Application (WDMApp) and has worked closely with advanced computing experts at Princeton University, particularly through the Princeton Institute for Computational Science and Engineering (PICSciE).

At the same time, PPPL is developing its quantum computing capabilities for plasma simulations, Dorland said. These new capabilities will help PPPL make greater contributions to future fusion research on the international fusion experiment ITER and continue to develop next-generation fusion devices.

Chaired assessment of computational physics at PPPL

Dorland chaired an external assessment of PPPL’s computational physics capabilities in December 2019 that found that numerous PPPL researchers are doing computational research but that various individuals and teams are siloed and may not be fully aware of one another’s efforts. “These are outstanding teams of professionals writing outstanding papers but they’re often not sharing software and computational knowledge,” Dorland said.

The report also recommended that PPPL develop a closer partnership with Princeton University as well as with other universities with expertise in this area such as Rutgers University, Dorland said.

Dorland will work at PPPL half-time and will continue to work half-time as a professor at the University of Maryland. Dorland has served as acting associate laboratory director for the past several months. He hosted a virtual retreat in April with many PPPL staff members to share information and begin discussing a strategic plan for computational physics, which was part of PPPL’s long-term vision outlined in the Annual Laboratory Plan.

Graduated from Princeton in 1993

Dorland received special and highest honors when he graduated from the University of Texas in 1988 with a bachelor’s degree in physics. He received a Ph.D. in astrophysical sciences from Princeton University in 1993. While a graduate student he worked with Cowley, a PPPL staff researcher at the time, and his advisor was PPPL physicist Greg Hammett.

Dorland also earned a master’s degree in public affairs from the Princeton School of Public and International Affairs (formerly the Woodrow Wilson School) in 1993 where he focused on science policy. In addition to winning the E.O. Lawrence Award, he is a University of Maryland Distinguished Scholar-Teacher. He was director of the University of Maryland Honors College for seven years. Dorland was named a fellow of the American Physical Society’s Division of Plasma Physics in 2005.

Dorland is open about his battle with a rare type of cancer called chordoma, tumors that occur in the base of the skull and spine. He was diagnosed with the disease in 2004 and was given two years to live. The tumors have affected Dorland’s spinal column and impacted his ability to walk. Dorland was one of the people who founded the Chordoma Foundation(link is external), which has raised millions of dollars for research. He was one of the first patients in a trial immunotherapy treatment in 2012. The treatment seemed to work at first but then failed and Dorland took part in another trial of an immunotherapy in 2016. Dorland has remained active with the Chordoma Foundation as a volunteer and still offers advice to chordoma patients all over the world.

Dorland and his wife, Sarah Penniston-Dorland, a professor of geology at the University of Maryland, live in College Park, Maryland. They have an adult daughter, Kendall Dorland.

Dorland says he is looking forward to the challenge of building a robust computational science program at PPPL “This is about building a really successful organization within the Laboratory to support the mission,” he said.

About PPPL

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov


Source: PPPL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s second generation N-series platform. The chip IP vendor said the Read more…

By Tiffany Trader

Microsoft’s Azure Quantum Platform Now Offers Toshiba’s ‘Simulated Bifurcation Machine’

September 22, 2020

While pure-play quantum computing (QC) gets most of the QC-related attention, there’s also been steady progress adapting quantum methods for select use on classical computers. Today, Microsoft announced that Toshiba’ Read more…

By John Russell

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availability of instances with Nvidia’s newest GPU, the A100. OCI als Read more…

By John Russell

IBM, CQC Enable Cloud-based Quantum Random Number Generation

September 21, 2020

IBM and Cambridge Quantum Computing (CQC) have partnered to achieve progress on one of the major business aspirations for quantum computing – the goal of generating verified, truly random numbers that can be used for a Read more…

By Todd R. Weiss

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at current count) across the European Union and supplanting HPC Read more…

By Oliver Peckham

AWS Solution Channel

Next-generation aerospace modeling and simulation: benchmarking Amazon Web Services High Performance Computing services

The aerospace industry has been using Computational Fluid Dynamics (CFD) for decades to create and optimize designs digitally, from the largest passenger planes and fighter jets to gliders and drones. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for high-performance computing, a newly created position that is a Read more…

By Tiffany Trader

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s seco Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie, Tiffany Trader and Todd R. Weiss

IBM’s Quantum Race to One Million Qubits

September 15, 2020

IBM today outlined its ambitious quantum computing technology roadmap at its virtual Quantum Summit. The eye-popping million qubit number is still far out, agrees IBM, but perhaps not that far out. Just as eye-popping is IBM’s nearer-term plan for a 1,000-plus qubit system named Condor... Read more…

By John Russell

Nvidia Commits to Buy Arm for $40B

September 14, 2020

Nvidia is acquiring semiconductor design company Arm Ltd. for $40 billion from SoftBank in a blockbuster deal that catapults the GPU chipmaker to a dominant position in the datacenter while helping troubled SoftBank reverse its financial woes. The deal, which has been rumored for... Read more…

By Todd R. Weiss and George Leopold

AMD’s Massive COVID-19 HPC Fund Adds 18 Institutions, 5 Petaflops of Power

September 14, 2020

Almost exactly five months ago, AMD announced its COVID-19 HPC Fund, an ongoing flow of resources and equipment to research institutions studying COVID-19 that began with an initial donation of $15 million. In June, AMD announced major equipment donations to several major institutions. Now, AMD is making its third major COVID-19 HPC Fund... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This