Blue Waters Assists Researchers Studying the Early Building Blocks of the Universe

October 26, 2015

Oct. 26 — Why do we care what happened 13 billion years ago?

A bold lead question for an interview with an astrophysicist looking at the early universe, but one that doesn’t seem to faze Brian O’Shea. The Michigan State University professor just smiles across the Skype connection and then chuckles.

“If you are interested in the Milky Way today, then understanding the early universe is really important,” he says, still smiling. “Through a process called hierarchical structure formation, little galaxies form bigger galaxies and bigger and bigger galaxies. It happens over and over again and you get a galaxy like the Milky Way. The main reason I’m interested in these galaxies in the very early universe is that fundamentally they are the progenitors of galaxies like the Milky Way. They are essentially the first building blocks. It’s one of those things where the initial state is really important for what happens at the end.”

O’Shea is no stranger to supercomputing or NCSA, dating back to his days as a student at the University of Illinois at Urbana-Champaign. As leader of a Petascale Computing Resource Allocations (PRAC) team that includes co-principal investigator Michael Norman and Hao Xu at the University of California, San Diego, John Wise of Georgia Tech, and Britton Smith of the University of Edinburgh, O’Shea’s been able to explore early galaxy formation and evolution. The team has published more than 16 papers, primarily in the Astrophysical Journal.

The team’s simulations on Blue Waters are, says O’Shea, the most sophisticated simulations that anyone has ever done of galaxies in the early universe. One of the things they’ve found through the simulations is that early on in the universe there are actually far fewer galaxies than they thought.

“The smaller galaxies are just gone and we don’t completely understand that. Our theory right now is that it is radiation from all of the bigger galaxies that suppresses star formation in the dwarfs,” says O’Shea.

When two galaxies merge with each other to form a larger galaxy it is primarily because the dark matter is drawn together by its gravitational potential, explains O’Shea. Gas is mostly along for the ride in galaxy formation, while stars in a galaxy contribute to, but don’t dominate, pulling together the galaxies. This leads to “dark” halos—matter that’s not seen, doesn’t have much gas in it, and has very few stars or even no stars at all.

“What we’re finding is that some of these dark matter halos have no stars at all. And something else that is really interesting is when you look at the satellite galaxies in the Milky Way the smaller ones are dark matter dominated. In the Milky Way there’s about 10 times as much dark matter as there are stars, and if you look at these really small dwarf galaxies it’s more like 1,000 times more dark matter than there is stars. That’s because it’s really hard to form the stars because of all these other physical effects. And in our simulations where we’re looking at galaxies that are more the size of those dwarf galaxies we see the same thing; that their dark matter clearly dominates. That there’s a hundred times more dark matter than there is stars, or a 1,000 times more dark matter than there is stars.

“So the pieces are actually starting to fall together in terms of understanding what’s going on in these galaxies around the Milky Way. What we’re seeing at high redshift early in the universe when we’re doing these simulations is that the bigger galaxies around are sort of stomping on their buddies. Radiation from the big galaxies keeps the small ones from doing anything exciting, keeps them from forming stars. About a billion years after the Big Bang there’s just enough radiation that the whole universe gets ionized and all of these little galaxies can never form stars after that, they’re just completely quenched for the rest of their lives,” says O’Shea.

What this means, he says, is that there should be a significant number of dark matter halos without any stars in the middle as well as small galaxies with only a few stars that won’t form additional stars. And that actually agrees with the galaxies seen by the Dark Energy Survey (DES) and the Sloan Digital Sky Survey where there’s a hundred more times dark matter than stars, or a thousand times more dark matter than stars in terms of the mass, and all of the star formation happened 13 billion years ago.

“Once you get to stars that are that old the margin of error is a couple billion years, simply because they evolve quite slowly so you can’t quite tell how old they are,” he says with a laugh. “But it’s consistent with this idea of everything happening really early on in the universe.”

Dwarf galaxies around the Milky Way are by and large relics of this first generation of galaxies. O’Shea is excited that analysis of data recorded by the DES has found more dwarf galaxies than previously observed. He says that discovery is the connection between the work his team has been doing on Blue Waters and the galaxy that we live in now.

“The work that we’re doing on Blue Waters is trying to understand how those first galaxies behave. A lot of those galaxies are still around and are still in orbit around the Milky Way, they’re just really hard to find. They’re relics, they’re fossils. The term galactic archaeology refers to looking at all these really old stellar populations, really old galaxies, really old stars, to figure out what was going on in the early universe. These ultra-faint dwarf galaxies that you find in DES are really fossils of what happened in that epoch right after the Big Bang that we are studying directly with our simulations.”

Many Mysteries

Yet for all we learn about the universe there are many, many things in the universe that remain unexplainable, despite decades of galactic research. Take black holes, for instance. There’s a black hole at the center of every massive galaxy, including the Milky Way. Yet no one is quite sure how this region of space forms in which nothing escapes, including light. Nor do researchers know how it grows.

O’Shea and other researchers believe, however, that black holes are “really intimately tied to how galaxies form.” He’s the principal investigator on a recently awarded PRAC allocation that will allow him to connect his work on the early universe to the present day Milky Way. He’ll lead a team that will use Blue Waters to conduct simulations on several aspects of galaxy evolution, including exploring precisely how the early galaxies and black holes turn into present-day galaxies.

Early Stars

Included in the team’s research is star formation. O’Shea is among the researchers who are convinced that early star formation “sets the stage for everything that happens afterwards.” And by sets the stage he means “they produce the metals that pollute the gas that all this star formation occurs in. They change the chemical composition and the actual behavior of the gas; it changes the future generation of star formation.”

The first stars in the universe, called primordial stars, formed during the Big Bang from just hydrogen and helium. Those gases are poor coolants, resulting in hot clouds of gas in the universe. Stars that form from hot gases are significantly larger than stars that form later from cooler gases. The later stars have carbon, nitrogen, oxygen and iron in them, among other things.

“The first generation stars are much bigger and brighter. One of the questions we’ve been trying to answer,” says O’Shea, “is how does that transition take place. We know that at some point there were stars that were primordial and then at some point later there were some stars that have metal. By the way, we call metal anything heavier than helium on the periodic table. That’s a term that astronomers use to mean it came from stars and it absolutely enrages chemists because metal has a very specific meaning in their field. I keep using that word in an indelicate way and I apologize. We’re really interested in the process by which the universe gets polluted with all of this other stuff on the periodic table. So I’m working on a project with Britton Smith and John Wise, and we’re trying to understand how that transition takes place.”

The difference between big stars and small stars is the difference between all of the stars blowing up in supernovae and only some of them blowing up in supernovae, he explains. The size of the stars also affects the radiation emitted.

And the first generation of stars “also probably produce the black holes that end up in the middle of all the galaxies today. We’re not sure about that but it is a plausible theory and some people think it’s true,” says O’Shea.

The mass of a star determines how long it lives. O’Shea says simulations, such as those done by his Michigan State colleague Ed Brown, have shown that smaller stars can live for 20 or 30 billion years, which is longer than the current age of the universe. So many of the smaller, dimmer stars that astronomers observe are most likely “relics of that initial time. But these little stars evolve really slowly. They’re actually offering really useful clues as to what’s going on early in the universe,” he says.

Dense of Void

Another issue O’Shea is exploring is that different parts of the universe are denser than other parts. There are galaxies in groups, like the Milky Way and Andromeda. But there are also voids—large regions that are millions and millions of light years across—that, as far as can be determined, are totally empty.

In his simulations run on Blue Waters, however, instead of being really, really dense or really, really empty these regions are somewhat dense or somewhat empty, but not definitively either dense or empty. Exploring a dense region that would be a galaxy cluster, an average region that the Milky Way would form from, and a low-density region that a void would form from and trying to understand the differences between the over-dense region, the average region and the under-dense region is another research focus O’Shea believes could yield clues about the early universe and its influence on the present day.

“I’m really interested in that, but we’re still in the middle of that analysis,” says O’Shea. “We got sidetracked with other science and there’s not that many of us [on the team]. That’s something that is really interesting because at present day, 13.7 billion years after the Big Bang, it’s really obvious that galaxies behave differently in different environments. So when galaxies are in clusters where they are all packed tightly together and orbiting around each other at hundreds of kilometers a second, galaxies look different in that environment compared to something like the Milky Way. And we want to know where along the line does that actually happen. Do you see differences between environments when you look at galaxies 400 or 500 million years after the Big Bang when the universe is 4 percent of the age that it is today, or does it take longer for those differences to develop? It’s an interesting question, it’s very relevant to modern day galaxy formation. We just haven’t answered it yet.”

Source: Barbara Jewett, NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

AWS Solution Channel

Data compression with increased performance and lower costs

Many customers associate a performance cost with data compression, but that’s not the case with Amazon FSx for Lustre. With FSx for Lustre, data compression reduces storage costs and increases aggregate file system throughput. Read more…

KAUST Leverages Mixed Precision for Geospatial Data

July 28, 2021

For many computationally intensive tasks, exacting precision is not necessary for every step of the entire task to obtain a suitably precise result. The alternative is mixed-precision computing: using high precision wher Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire