Blue Waters Enables Massive Flu Simulations

March 24, 2016

March 24 — Influenza is more than a seasonal nuisance leading to a few days of discomfort and a brief absence from school or work. According to the World Health Organization (WHO), the disease is responsible for hundreds of thousands of deaths each year and has the potential to mutate into a more virulent, contagious form that claims millions of lives (as happened in the 1918 “Spanish flu” pandemic).

To better understand the influenza infection process and to explore novel opportunities for drug and vaccine development, the research team led by Rommie Amaro at the University of California, San Diego, constructed an atomic-resolution model of the entire influenza viral coat and simulated this 160-million-atom system on the Blue Waters supercomputer at NCSA.

“Blue Waters really made simulation on this scale possible. It was a critical resource for us,” says Jacob Durrant, a post-doctoral researcher in Amaro’s lab and at the National Biomedical Computation Resource, who is currently analyzing the simulation data.

Amaro’s lab focuses on developing computational methods and applying them to questions of biophysics and drug discovery. In the case of influenza, large-scale computational models are useful because electron microscopy and X-ray crystallography lack either the atomic resolution or size scaling necessary to answer a number of important questions. Furthermore, lab accidents involving “gain-of-function” experiments, which try to anticipate what new live viral strains will evolve in nature by artificially evolving those strains in the lab, pose the frightening risk of releasing artificially virulent and contagious viruses “into the wild,” generating the very pandemic that researchers seek to anticipate and prevent. Computational modelling may reduce the need for these risky experiments.

Proteins Key to the Infection Process

The team’s recent simulations on Blue Waters focused on the influenza viral coat. This outer layer of the virus includes two spike-like glycoproteins (neuraminidase and hemagglutinin) that play vital roles in both the initial and final stages of influenza infection. First, hemagglutinin latches onto molecules on the host cell’s surface, creating a link that enables the virus to enter the cell and reproduce. The replicated viruses then bud from the infected cell but remain attached by the same kinds of molecular links that connected the original invading virus. Neuraminidase cuts those links so the newly spawned viruses can move on to infect other host cells.

The various components of the viral coat have been studied in isolation, which has led to anti-flu drugs such as Tamiflu™. But as the influenza virus mutates and develops resistance to these approved drugs, new therapeutics must be developed. Amaro and Durrant hope that modelling the entire virus coat and observing how its various components interact with one another and with their microscopic environment will yield important new insights.

Creating the Viral Coat Model

The construction of this complex and detailed model was aided by the work of Amaro’s collaborator Alasdair Steven at the National Institutes of Health, who used electron tomography to determine the general shape of the influenza virus and the approximate locations of the glycoprotein spikes. Next Amaro’s team transformed this low-resolution data into a high-resolution atomistic model. Durrant used LipidWrapper, software he developed that can wrap lipid-bilayer models around any surface regardless of its geometry, to wrap an expansive lipid-bilayer model around the entire volume of the virus. He then positioned atomic-resolution models of the glycoproteins at the appropriate locations.

“One of the really exciting aspects of this research is the development of an integrative structural model,” Amaro says. “You have to bring together many different pieces of data to create these realistic models.”

“With these platforms, we can create any strain of the virus that we want.”

Modeling Millions of Atoms on Blue Waters

When immersed in a bath of virtual water with the appropriate electrolytes, the viral-coat system contained 160 million atoms. Drawing upon more than 114,000 CPUs at a time on the Blue Waters supercomputer, Amaro’s team simulated 158 nanoseconds of the coat using NAMD, a molecular dynamics program developed by the Theoretical and Computational Biophysics Group at the University of Illinois at Urbana-Champaign.

“These new capabilities provided by Blue Waters allow us to simulate at relevant spatial and temporal scales,” Amaro says. “It allows us to ask questions and test new hypotheses that no one has been able to explore before.”

Since completing the viral-coat simulations in January 2016, the team has moved into data analysis. Durrant visited the Theoretical and Computational Biophysics team (also designated the Center for Macromolecular Modeling and Bioinformatics by the National Institute of General Medical Sciences) in February, receiving their support in the investigation.

“We’re very interested in how drugs might bind to these different proteins,” Durrant says. “Drugs typically only bind to proteins if they can fit snugly into small pockets on the protein surface, but in real life the shapes of these pockets are constantly changing. Designing a drug is kind of like trying to hit a moving target. Which of the many pocket shapes is most complementary to the given drug you’re studying?”

“One of my theories is that the surrounding environment might impact the way these flexible glycoproteins change their shapes,” Durrant says. “You might not see certain pharmacologically relevant binding-pocket shapes if you only simulate the proteins in isolation.”

Source: NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Debuts ‘Infrastructure Processing Unit’ as Part of Broader XPU Strategy

June 15, 2021

To boost the performance of busy CPUs hosted by cloud service providers, Intel Corp. has launched a new line of Infrastructure Processing Units (IPUs) that take over some of a CPU’s overhead to let it do more processin Read more…

ISC Keynote: Glimpse into Microsoft’s View of the Quantum Computing Landscape

June 15, 2021

Looking for a dose of reality and realistic optimism about quantum computing? Matthias Troyer, Microsoft distinguished scientist, plans to do just that in his ISC2021 keynote in two weeks –  Quantum Computing: From Ac Read more…

Q&A with Google’s Bill Magro, an HPCwire Person to Watch in 2021

June 11, 2021

Last Fall Bill Magro joined Google as CTO of HPC, a newly created position, after two decades at Intel, where he was responsible for the company's HPC strategy. This interview was conducted by email at the beginning of A Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their correspondingly powerful cooling systems. As a result, these Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, with the U.K.-based Cambridge Quantum Computing (CQC), which Read more…

AWS Solution Channel

Building highly-available HPC infrastructure on AWS

Reminder: You can learn a lot from AWS HPC engineers by subscribing to the HPC Tech Short YouTube channel, and following the AWS HPC Blog channel. Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled its in-person component with a couple months’ notice, ISC Read more…

ISC Keynote: Glimpse into Microsoft’s View of the Quantum Computing Landscape

June 15, 2021

Looking for a dose of reality and realistic optimism about quantum computing? Matthias Troyer, Microsoft distinguished scientist, plans to do just that in his I Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their c Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

What is Thermodynamic Computing and Could It Become Important?

June 3, 2021

What, exactly, is thermodynamic computing? (Yes, we know everything obeys thermodynamic laws.) A trio of researchers from Microsoft, UC San Diego, and Georgia Tech have written an interesting viewpoint in the June issue... Read more…

AMD Introduces 3D Chiplets, Demos Vertical Cache on Zen 3 CPUs

June 2, 2021

At Computex 2021, held virtually this week, AMD showcased a new 3D chiplet architecture that will be used for future high-performance computing products set to Read more…

Nvidia Expands Its Certified Server Models, Unveils DGX SuperPod Subscriptions

June 2, 2021

Nvidia is busy this week at the virtual Computex 2021 Taipei technology show, announcing an expansion of its nascent Nvidia-certified server program, a range of Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire