Blue Waters Helps Beckman Researchers Construct Atomic Model of an Immature Retrovirus

August 12, 2015

Aug. 12 — Using molecular modeling and large-scale molecular dynamic simulation, Beckman researchers have constructed an atomic model of an immature retrovirus.

The researchers from the Theoretical and Computational Biophysics Group published their work in the journal Structure.

Retroviruses, such as HIV, are tricky to treat. They go through a multistage process to produce infectious particles. The viruses that are released from infected cells are initially in an immature state and are composed of an RNA genome surrounded by a coat of protein. Upon their release, the viruses undergo a maturation process that rearranges the viral proteins and activates the conversion of the RNA genome into DNA through a process called reverse transcription. The viral DNA then invades the host cell’s genome. The infected cell is programmed to release multiple copies of the immature virus into the host’s bloodstream. These newly released viruses must in turn mature before they can infect other cells.

Not only do retroviruses cause life-long infections, but also in the complex process of reverse-transcribing RNA into DNA, many mutations can occur, making the retrovirus even more difficult to target.

One strategy for preventing the spread of a retrovirus is to lock the viral particles in their immature, non-infectious state. Unfortunately, the complexity and size of the viral particle―an irregular and incomplete hexagonal shell of close to 100 nanometers in size―have prevented the experimental determination of the atomic-level structure of the particle.

A number of studies have examined the structure of the Rous sarcoma virus (RSV), which affects birds and provides a good model for other retroviruses, but none have been able to provide a high-resolution look at the immature stage of the virus.

Over a period of two years, researchers have been performing calculations and simulations in order to reveal the structural features of the virus. With the help of the Titan supercomputer at the Oak Ridge Leadership Computing Facility in Tennessee and the Blue Waters supercomputer at the National Center for Supercomputing Applications (NCSA) at Illinois, the researchers were the first to provide the atomic-level structural model of the immature retroviral lattice of RSV. A five-microsecond simulation describing the motion of half a million atoms involves a hefty calculation that took five days using 30 percent of the Titan supercomputer, more than 5,000 computing nodes—each node is equivalent to a high-end workstation.

“We have had a pretty good understanding of the mature infectious particle at a level where we can make specific predictions about the local chemical interactions between the protein subunits in the virus,” said Rebecca Craven, professor of microbiology and immunology and at Penn State University and one of the study’s authors. “But the field was really lacking similar high-resolution knowledge about the immature virus. This new model is the first to give us an atomic-level look at the immature state. With that knowledge we can try to understand the precise molecular mechanisms of virus maturation and help to elucidate how drugs can be designed to interfere with that.”

According to Boon Chong Goh, a graduate student in physics at Illinois and lead author on the study, a six-helix bundle domain located on the inside surface of the immature protein shell could be a key to understanding and blocking the virus.

“Recent advances in cryo-electron tomography allow us to model the majority of the immature retroviral lattice, except the six-helix bundle domain,” said Goh. “Experimentalists do not have a clear view of that domain because of its high flexibility. And that’s where we come in. Using advanced computational techniques and supercomputers, we modeled and refined an all-atom model of the six-helix bundle.

The researchers believe that the six-helix bundle is amphipathic, a chemical property that possesses an affinity for both water and fat, and that it is enclosed by a ring of salt bridges, contributing to the stability of the bundle.

“HIV is a close relative to RSV, and HIV is also known to have this domain, which has been a drug target for years. A drug named Bevirimat (BVM) was developed to target the six-helix bundle of immature HIV, but it did not pass the clinical trials,” said Goh.

“The experience with BVM did show that inhibitors that target the six helix bundle domain can be very powerful HIV anti-retroviral drugs by preventing virus maturation,” said Craven.

“The main idea is that you have two forms of the virus: the immature and the mature,” said Juan Perilla, postdoctoral researcher and co-first author of the study. “The immature is not infectious, so the idea is that ultimately you want to prevent it from becoming the mature form. The problem is that BVM targets the six-helix bundle domain, but no one really knows the structure of the immature lattice in HIV. There are a few models, but they are not high resolution, so we decided to work in this direction and we picked RSV because it’s a good model to study the virus. Our next step is to go to HIV.”

“This result is an example of where computational methodology is really complementing medical lab experiments,” said Klaus Schulten, director of the TCBG and professor of physics.

According to Schulten, computational experiments can help provide solutions to complex problems in the laboratory.

“The living world is made of molecules and you need to know this world. Sometimes you just do it through trial and error in a chemical research lab and you see that a newly designed drug molecule has a certain effect that often you only understand later. But then there is, of course, a more systematic way of resolving the molecular world, namely the computational way taken in our RSV study, and one can derive medical treatments from the knowledge reached computationally,” Schulten explained. “This will be done more and more often.”

The group has already begun the process of studying the immature HIV virus on the Blue Waters supercomputer located at the National Center for Supercomputing Applications at Illinois.

Source: Beckman Institute, University of Illinois at Urbana-Champaign

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This