Blue Waters Reveals How Staph Bacteria Cling to Human Cells

March 30, 2018

March 30, 2018 — What makes pathogenic bacteria so persistent? Researchers from the Beckman Institute at the University of Illinois and the University of Munich(LMU) are using the National Center for Supercomputing Applications’ (NCSA) Blue Waters supercomputer to simulate and decipher the physical adhesion mechanism of a widespread pathogen virulence factor. This, in turn, could lead to innovation in the treatment and prevention of relatively common staph infections that can turn deadly.

Simulation of a staphylococcus bacterium (left) connecting itself to a human host via an adherin protein. Credit: Theoretical and Computational Biophysics Group at the University of Illinois at Urbana-Champaign

Staph infections are caused by staphylococcus bacteria, types of germs commonly found on the skin of healthy individuals. Most of the time, these bacteria cause no problems or result in relatively minor skin infections. According to the Mayo Clinic, however, septicemia (also known as blood poisoning) can occur when staph bacteria enter a person’s bloodstream, giving it access to locations deep within the body, causing infections. Not surprisingly, staph infections are the leading cause of healthcare-related, nosocomial infections, frequently preying on medical devices such as artificial joints or cardiac pacemakers.

But how do these bacteria invade our bodies? Staph bacteria adhere to their hosts—us humans—with exceptional mechanical resilience. Understanding the physical mechanisms that underlie this persistent stickiness at the molecular level is instrumental to combat such invaders. Combining experimental and computational approaches, Rafael Bernardi and the late Klaus Schulten from the Beckman Institute teamed up with Lukas Milles and Hermann Gaub from the LMU Physics Department to decipher the mechanism responsible for staph adhesion. The results were published in Science Magazine.

The collaborative study, one of the last that Prof. Schulten participated in, took advantage of NCSA’s Blue Waters supercomputer to deconstruct the mechanism of the interaction between staph adhesion factors and human proteins. Using an Atomic Force Microscope (AFM) the LMU team was able to measure the forces that govern the interaction between an individual adhesin (a staph protein) and its human target molecule. Independently, the Illinois team investigated the same protein complex by performing computationally-intensive steered molecular dynamics (SMD) simulations, carried out using the Blue Waters supercomputer.

The unbinding force of a single adhesin-human protein complex measured was exceptional, reaching over two nanonewtons, a regime generally associated with the strength of covalent bonds, and nearly an order of magnitude stronger than most other protein-protein interactions known. Lukas Milles points out “the complex was so strong that, at first, we thought something had gone wrong with the experiment.”

How is this extreme binding force generated? The answer to what gives this system such exceptional mechanical strength can be found in its physical principle, which was revealed through the seamless integration of experimental and computational results.

“The large number of molecular dynamics simulations performed, over 2,400, allowed the team to compare simulations and experiments in the same framework.” said Bernardi.

“The agreement between simulation and experiments were always good in the past, yet in a qualitative way,” said Gaub. “However, the new results obtained by the Illinois team using Blue Waters allowed a direct comparison also in a quantitative manner.”

Moreover, due to the incredible agreement between simulation and experiment, the Illinois researchers felt confident to test in silico, experiments that could not be carried out in vitro. Bernardi explains that systematically “turning off” different physical variables in the simulations allowed them to understand what were the key contributors to the large mechanical strength of the complex.

The tools that allowed Dr. Bernardi to perform these simulations were developed at the Beckman Institute over the last two decades under the leadership of Prof. Schulten (1947-2016). The molecular dynamics program NAMD efficiently scales up to hundreds of thousands of computer cores, making it one of the most used software in large supercomputer centers.

Prof. Schulten was a leader in biophysics, developing the tools that his group (Dr. Bernardi included), and many others, used to solve complicated molecular puzzles like the structure of the HIV-capsid, the ribosome, the human proteasome, and the mechanism of action of many protein complexes. According to Gaub, Schulten’s contributions were “absolutely essential for the field of single-molecule biophysics. By providing the tools to understanding the molecular details of life, Klaus started the field, nourished it with excellent physics, and kept pushing the technical limits to be able to address the relevant questions in life sciences.”

With fundamental insights provided by Prof. Schulten, the team overcame the unexpected loss of their colleague by discovering that the interactions that make the staph adhesin so strong when binding human proteins were mediated mainly by hydrogen bond interactions between the protein backbones.

The supercomputer-created simulations revealed that, when exposed to mechanical stress, the hydrogen bonds lock in a cooperative shear geometry—the underlying physical principle. This specific configuration is able to reach extreme forces, as all bonds have to be broken in parallel to dissociate the target. In a simplified analogy, two strips of Velcro are difficult to separate when pulled from opposing ends, yet come apart easily when pulled orthogonally.

Through site-directed mutagenesis and studies on homologs the computational model was confirmed. This bond geometry offers a striking advantage: By confining the physics of the mechanism to the peptide backbone, which is identical for every protein, high strength can be achieved binding a large spectrum of targets. Thus, the extreme physical strength of the system is largely independent of sequence and biochemical properties, but a built-in physical property—an invasive advantage for these staphylococci.

The unexpected mechanism expands our understanding of why pathogen adhesion is so resilient and may open new ways to inhibit staphylococcalinvasion. The development of anti-adhesion therapy could promote the detachment of staph bacteria, facilitating bacterial clearance. Understanding the mechanism of staph infection at the molecular and now atomic level may open new avenues for an intelligent design of antimicrobial therapies.


Source: NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

D-Wave Delivers 5000-qubit System; Targets Quantum Advantage

September 29, 2020

D-Wave today launched its newest and largest quantum annealing computer, a 5000-qubit goliath named Advantage that features 15-way qubit interconnectivity. It also introduced the D-Wave Launch program intended to jump st Read more…

By John Russell

What’s New in Computing vs. COVID-19: AMD, Remdesivir, Fab Spending & More

September 29, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

Global QC Market Projected to Grow to More Than $800 million by 2024

September 28, 2020

The Quantum Economic Development Consortium (QED-C) and Hyperion Research are projecting that the global quantum computing (QC) market - worth an estimated $320 million in 2020 - will grow at an anticipated 27% CAGR betw Read more…

By Staff Reports

DoE’s ASCAC Backs AI for Science Program that Emulates the Exascale Initiative

September 28, 2020

Roughly a year after beginning formal efforts to explore an AI for Science initiative the Department of Energy’s Advanced Scientific Computing Advisory Committee last week accepted a subcommittee report calling for a t Read more…

By John Russell

Supercomputer Research Aims to Supercharge COVID-19 Antiviral Remdesivir

September 25, 2020

Remdesivir is one of a handful of therapeutic antiviral drugs that have been proven to improve outcomes for COVID-19 patients, and as such, is a crucial weapon in the fight against the pandemic – especially in the abse Read more…

By Oliver Peckham

AWS Solution Channel

The Water Institute of the Gulf runs compute-heavy storm surge and wave simulations on AWS

The Water Institute of the Gulf (Water Institute) runs its storm surge and wave analysis models on Amazon Web Services (AWS)—a task that sometimes requires large bursts of compute power. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

NOAA Announces Major Upgrade to Ensemble Forecast Model, Extends Range to 35 Days

September 23, 2020

A bit over a year ago, the United States’ Global Forecast System (GFS) received a major upgrade: a new dynamical core – its first in 40 years – called the finite-volume cubed-sphere, or FV3. Now, the National Oceanic and Atmospheric Administration (NOAA) is bringing the FV3 dynamical core to... Read more…

By Oliver Peckham

D-Wave Delivers 5000-qubit System; Targets Quantum Advantage

September 29, 2020

D-Wave today launched its newest and largest quantum annealing computer, a 5000-qubit goliath named Advantage that features 15-way qubit interconnectivity. It a Read more…

By John Russell

DoE’s ASCAC Backs AI for Science Program that Emulates the Exascale Initiative

September 28, 2020

Roughly a year after beginning formal efforts to explore an AI for Science initiative the Department of Energy’s Advanced Scientific Computing Advisory Commit Read more…

By John Russell

NOAA Announces Major Upgrade to Ensemble Forecast Model, Extends Range to 35 Days

September 23, 2020

A bit over a year ago, the United States’ Global Forecast System (GFS) received a major upgrade: a new dynamical core – its first in 40 years – called the finite-volume cubed-sphere, or FV3. Now, the National Oceanic and Atmospheric Administration (NOAA) is bringing the FV3 dynamical core to... Read more…

By Oliver Peckham

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s second generation N-series platform. The chip IP vendor said the new platforms will deliver 50 percent and 40 percent more... Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie, Tiffany Trader and Todd R. Weiss

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics code. These optimizations will be incorporated into release 2.15 with patches available for earlier versions. Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This