Blue Waters Reveals How Staph Bacteria Cling to Human Cells

March 30, 2018

March 30, 2018 — What makes pathogenic bacteria so persistent? Researchers from the Beckman Institute at the University of Illinois and the University of Munich(LMU) are using the National Center for Supercomputing Applications’ (NCSA) Blue Waters supercomputer to simulate and decipher the physical adhesion mechanism of a widespread pathogen virulence factor. This, in turn, could lead to innovation in the treatment and prevention of relatively common staph infections that can turn deadly.

Simulation of a staphylococcus bacterium (left) connecting itself to a human host via an adherin protein. Credit: Theoretical and Computational Biophysics Group at the University of Illinois at Urbana-Champaign

Staph infections are caused by staphylococcus bacteria, types of germs commonly found on the skin of healthy individuals. Most of the time, these bacteria cause no problems or result in relatively minor skin infections. According to the Mayo Clinic, however, septicemia (also known as blood poisoning) can occur when staph bacteria enter a person’s bloodstream, giving it access to locations deep within the body, causing infections. Not surprisingly, staph infections are the leading cause of healthcare-related, nosocomial infections, frequently preying on medical devices such as artificial joints or cardiac pacemakers.

But how do these bacteria invade our bodies? Staph bacteria adhere to their hosts—us humans—with exceptional mechanical resilience. Understanding the physical mechanisms that underlie this persistent stickiness at the molecular level is instrumental to combat such invaders. Combining experimental and computational approaches, Rafael Bernardi and the late Klaus Schulten from the Beckman Institute teamed up with Lukas Milles and Hermann Gaub from the LMU Physics Department to decipher the mechanism responsible for staph adhesion. The results were published in Science Magazine.

The collaborative study, one of the last that Prof. Schulten participated in, took advantage of NCSA’s Blue Waters supercomputer to deconstruct the mechanism of the interaction between staph adhesion factors and human proteins. Using an Atomic Force Microscope (AFM) the LMU team was able to measure the forces that govern the interaction between an individual adhesin (a staph protein) and its human target molecule. Independently, the Illinois team investigated the same protein complex by performing computationally-intensive steered molecular dynamics (SMD) simulations, carried out using the Blue Waters supercomputer.

The unbinding force of a single adhesin-human protein complex measured was exceptional, reaching over two nanonewtons, a regime generally associated with the strength of covalent bonds, and nearly an order of magnitude stronger than most other protein-protein interactions known. Lukas Milles points out “the complex was so strong that, at first, we thought something had gone wrong with the experiment.”

How is this extreme binding force generated? The answer to what gives this system such exceptional mechanical strength can be found in its physical principle, which was revealed through the seamless integration of experimental and computational results.

“The large number of molecular dynamics simulations performed, over 2,400, allowed the team to compare simulations and experiments in the same framework.” said Bernardi.

“The agreement between simulation and experiments were always good in the past, yet in a qualitative way,” said Gaub. “However, the new results obtained by the Illinois team using Blue Waters allowed a direct comparison also in a quantitative manner.”

Moreover, due to the incredible agreement between simulation and experiment, the Illinois researchers felt confident to test in silico, experiments that could not be carried out in vitro. Bernardi explains that systematically “turning off” different physical variables in the simulations allowed them to understand what were the key contributors to the large mechanical strength of the complex.

The tools that allowed Dr. Bernardi to perform these simulations were developed at the Beckman Institute over the last two decades under the leadership of Prof. Schulten (1947-2016). The molecular dynamics program NAMD efficiently scales up to hundreds of thousands of computer cores, making it one of the most used software in large supercomputer centers.

Prof. Schulten was a leader in biophysics, developing the tools that his group (Dr. Bernardi included), and many others, used to solve complicated molecular puzzles like the structure of the HIV-capsid, the ribosome, the human proteasome, and the mechanism of action of many protein complexes. According to Gaub, Schulten’s contributions were “absolutely essential for the field of single-molecule biophysics. By providing the tools to understanding the molecular details of life, Klaus started the field, nourished it with excellent physics, and kept pushing the technical limits to be able to address the relevant questions in life sciences.”

With fundamental insights provided by Prof. Schulten, the team overcame the unexpected loss of their colleague by discovering that the interactions that make the staph adhesin so strong when binding human proteins were mediated mainly by hydrogen bond interactions between the protein backbones.

The supercomputer-created simulations revealed that, when exposed to mechanical stress, the hydrogen bonds lock in a cooperative shear geometry—the underlying physical principle. This specific configuration is able to reach extreme forces, as all bonds have to be broken in parallel to dissociate the target. In a simplified analogy, two strips of Velcro are difficult to separate when pulled from opposing ends, yet come apart easily when pulled orthogonally.

Through site-directed mutagenesis and studies on homologs the computational model was confirmed. This bond geometry offers a striking advantage: By confining the physics of the mechanism to the peptide backbone, which is identical for every protein, high strength can be achieved binding a large spectrum of targets. Thus, the extreme physical strength of the system is largely independent of sequence and biochemical properties, but a built-in physical property—an invasive advantage for these staphylococci.

The unexpected mechanism expands our understanding of why pathogen adhesion is so resilient and may open new ways to inhibit staphylococcalinvasion. The development of anti-adhesion therapy could promote the detachment of staph bacteria, facilitating bacterial clearance. Understanding the mechanism of staph infection at the molecular and now atomic level may open new avenues for an intelligent design of antimicrobial therapies.


Source: NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire