Blue Waters Reveals How Staph Bacteria Cling to Human Cells

March 30, 2018

March 30, 2018 — What makes pathogenic bacteria so persistent? Researchers from the Beckman Institute at the University of Illinois and the University of Munich(LMU) are using the National Center for Supercomputing Applications’ (NCSA) Blue Waters supercomputer to simulate and decipher the physical adhesion mechanism of a widespread pathogen virulence factor. This, in turn, could lead to innovation in the treatment and prevention of relatively common staph infections that can turn deadly.

Simulation of a staphylococcus bacterium (left) connecting itself to a human host via an adherin protein. Credit: Theoretical and Computational Biophysics Group at the University of Illinois at Urbana-Champaign

Staph infections are caused by staphylococcus bacteria, types of germs commonly found on the skin of healthy individuals. Most of the time, these bacteria cause no problems or result in relatively minor skin infections. According to the Mayo Clinic, however, septicemia (also known as blood poisoning) can occur when staph bacteria enter a person’s bloodstream, giving it access to locations deep within the body, causing infections. Not surprisingly, staph infections are the leading cause of healthcare-related, nosocomial infections, frequently preying on medical devices such as artificial joints or cardiac pacemakers.

But how do these bacteria invade our bodies? Staph bacteria adhere to their hosts—us humans—with exceptional mechanical resilience. Understanding the physical mechanisms that underlie this persistent stickiness at the molecular level is instrumental to combat such invaders. Combining experimental and computational approaches, Rafael Bernardi and the late Klaus Schulten from the Beckman Institute teamed up with Lukas Milles and Hermann Gaub from the LMU Physics Department to decipher the mechanism responsible for staph adhesion. The results were published in Science Magazine.

The collaborative study, one of the last that Prof. Schulten participated in, took advantage of NCSA’s Blue Waters supercomputer to deconstruct the mechanism of the interaction between staph adhesion factors and human proteins. Using an Atomic Force Microscope (AFM) the LMU team was able to measure the forces that govern the interaction between an individual adhesin (a staph protein) and its human target molecule. Independently, the Illinois team investigated the same protein complex by performing computationally-intensive steered molecular dynamics (SMD) simulations, carried out using the Blue Waters supercomputer.

The unbinding force of a single adhesin-human protein complex measured was exceptional, reaching over two nanonewtons, a regime generally associated with the strength of covalent bonds, and nearly an order of magnitude stronger than most other protein-protein interactions known. Lukas Milles points out “the complex was so strong that, at first, we thought something had gone wrong with the experiment.”

How is this extreme binding force generated? The answer to what gives this system such exceptional mechanical strength can be found in its physical principle, which was revealed through the seamless integration of experimental and computational results.

“The large number of molecular dynamics simulations performed, over 2,400, allowed the team to compare simulations and experiments in the same framework.” said Bernardi.

“The agreement between simulation and experiments were always good in the past, yet in a qualitative way,” said Gaub. “However, the new results obtained by the Illinois team using Blue Waters allowed a direct comparison also in a quantitative manner.”

Moreover, due to the incredible agreement between simulation and experiment, the Illinois researchers felt confident to test in silico, experiments that could not be carried out in vitro. Bernardi explains that systematically “turning off” different physical variables in the simulations allowed them to understand what were the key contributors to the large mechanical strength of the complex.

The tools that allowed Dr. Bernardi to perform these simulations were developed at the Beckman Institute over the last two decades under the leadership of Prof. Schulten (1947-2016). The molecular dynamics program NAMD efficiently scales up to hundreds of thousands of computer cores, making it one of the most used software in large supercomputer centers.

Prof. Schulten was a leader in biophysics, developing the tools that his group (Dr. Bernardi included), and many others, used to solve complicated molecular puzzles like the structure of the HIV-capsid, the ribosome, the human proteasome, and the mechanism of action of many protein complexes. According to Gaub, Schulten’s contributions were “absolutely essential for the field of single-molecule biophysics. By providing the tools to understanding the molecular details of life, Klaus started the field, nourished it with excellent physics, and kept pushing the technical limits to be able to address the relevant questions in life sciences.”

With fundamental insights provided by Prof. Schulten, the team overcame the unexpected loss of their colleague by discovering that the interactions that make the staph adhesin so strong when binding human proteins were mediated mainly by hydrogen bond interactions between the protein backbones.

The supercomputer-created simulations revealed that, when exposed to mechanical stress, the hydrogen bonds lock in a cooperative shear geometry—the underlying physical principle. This specific configuration is able to reach extreme forces, as all bonds have to be broken in parallel to dissociate the target. In a simplified analogy, two strips of Velcro are difficult to separate when pulled from opposing ends, yet come apart easily when pulled orthogonally.

Through site-directed mutagenesis and studies on homologs the computational model was confirmed. This bond geometry offers a striking advantage: By confining the physics of the mechanism to the peptide backbone, which is identical for every protein, high strength can be achieved binding a large spectrum of targets. Thus, the extreme physical strength of the system is largely independent of sequence and biochemical properties, but a built-in physical property—an invasive advantage for these staphylococci.

The unexpected mechanism expands our understanding of why pathogen adhesion is so resilient and may open new ways to inhibit staphylococcalinvasion. The development of anti-adhesion therapy could promote the detachment of staph bacteria, facilitating bacterial clearance. Understanding the mechanism of staph infection at the molecular and now atomic level may open new avenues for an intelligent design of antimicrobial therapies.


Source: NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in its cloud service.  Google claimed the CPU is based on cut Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire