Brookhaven Lab Mobilizes Resources in Fight Against COVID-19

April 6, 2020

UPTON, N.Y., April 6, 2020 — Scientists and staff at the U.S. Department of Energy’s (DOE) national laboratories are marshaling their expertise, unique facilities, and other key resources in the battle against COVID-19. At Brookhaven National Laboratory:

  • Research is already underway to better understand key characteristics of the virus that causes COVID-19 and its interactions with human cells, which could help guide the development of therapeutic drugs and vaccines.
  • Laboratory scientists and collaborators are using experiments and computational methods to identify the most promising drug/vaccine candidates, and developing tools to help other scientists keep up with the latest developments around the world.
  • The Laboratory has also gathered critical protective equipment as part of a Federal effort to support medical professionals, and is exploring options for making much-needed supplies.
Brookhaven researchers are marshaling experimental capabilities and computational resources in the fight against the COVID-19 pandemic. Image courtesy of Brookhaven National Laboratory.

“Brookhaven Lab has exceptional resources for addressing some of the most urgent scientific and logistical challenges of this pandemic,” said John Hill, director of Brookhaven Lab’s National Synchrotron Light Source II (NSLS-II), who is chairing a working group to coordinate the Lab’s COVID-19 science and technology efforts, and is serving on a team coordinating the COVID-19 research across all the DOE national labs.

“The speed with which the entire scientific community is attacking this problem is amazing,” he said, “and the whole Lab, whether working off site or on, is part of this effort.”

Deciphering protein structures

Even as the Laboratory operates with minimal staff to help keep the virus from spreading, experiments are running at two of NSLS-II’s protein crystallography beamlines to help find ways to thwart the virus. These experiments aim to characterize the atomic-level structure of viral components, including how they connect with receptors on human cells, so scientists can identify ways to block the infection-causing interactions.

NSLS-II, a DOE Office of Science user facility, provides x-ray beams to create those atomic-scale pictures.

These images represent protein structures related to COVID-19 that have been solved at synchrotrons around the world and deposited in the Protein Data Bank. Studies continue at those facilities and at Brookhaven’s NSLS-II to decipher the details of the viral proteins and their interactions with human cells in an effort to develop antiviral drugs and vaccines. (a) 6LU7, (b) 6W41, (c) 6VYO  Image courtesy of RCSB Protein Data Bank.

“NSLS-II has the brightest synchrotron x-rays in the world for studying the proteins in the virus and understanding better the processes hijacked in infected cells,” said Sean McSweeney, leader of Brookhaven Lab’s structural biology program. “The high brightness means we can get ‘pictures’ from tiny crystal samples of the proteins. We don’t need to spend weeks, or months, growing big crystals, which is typically a bottleneck in protein crystallography. We also have methods for testing potential drugs that bind to these proteins and then collecting and sifting through data very rapidly—all of which greatly speed the process of discovery.”

Scientists from several pharmaceutical companies and academic researchers have already collected data, and more are expected each week, in some cases collaborating in the search for antiviral agents and targets for vaccines. Brookhaven scientists are engaged in this work as well.

“One group, which includes scientists from the biology department, is working to solve the structure of an ‘envelope’ protein embedded in the virus’s membrane. This protein is important to the virus’s life cycle,” McSweeney said. “Deciphering these structures will provide atomic-level data that could guide the development of drugs that bind to the proteins and interfere with their functions so the virus can no longer infect cells or replicate.”

The structural studies may help identify viral components that are most likely to trigger the production of antibodies—chemicals produced by the immune system that can fight off an infection. These immune-system-triggering proteins, known as antigens, form the basis of most vaccines.

“The Department of Energy has been exceptionally helpful in fast-tracking the approval process for this research,” Hill said. “Every proposal is getting beamtime.”

Much of the data will be published in the open research literature and deposited in the globally accessible Protein Data Bank so that scientists everywhere can learn from one another and build on each other’s efforts.  Brookhaven is also hosting a centralized portal to streamline access to all the structural biology resources across the DOE complex.

Brookhaven is also fielding requests to pursue COVID-19 protein studies at its new cryo-electron microscopy (cryoEM) facility—the Laboratory of BioMolecular Structure—which is currently under construction adjacent to NSLS-II.

“The Laboratory and DOE both recognize how crucial this facility will be to advancing our understanding of COVID-19, particularly for studying the large protein complexes that span cell membranes,” said Hill. “We are so grateful to everyone who is working to bring this facility into operation at an accelerated pace.”

Computational approaches

Once scientists know the viral components they want to target for developing therapeutic agents, they need to know which small drug-like molecules will fit into the viral-protein pockets or the cell-surface receptors to which the virus binds. Brookhaven scientists are working on that piece of the puzzle, too.

NSLS-II, for example, can run experiments using samples of viral or receptor proteins and drug candidates together to find which fit best and offer the most promise of blocking infection.

Scientists are using supercomputing resources at Brookhaven and across the U.S. to screen the chemical structures of a wide range of small molecules that might be able to block key viral functions. Image courtesy of Brookhaven National Laboratory.

But the universe of small molecules that could interact with protein components is extremely large. Running experiments to look at every possibility would take far too long.

Fortunately, computational scientists at Brookhaven, working in partnership with colleagues at Stony Brook University, Argonne National Laboratory (ANL), Rutgers University, Oak Ridge National Laboratory (ORNL), the University of Texas, and elsewhere—currently around 160 scientists, 25 at Brookhaven—are helping to speed up the search for drugs.

“The aim of this research is to accelerate the development of antiviral drugs by modeling proteins that play critical roles in the virus life cycle to identify promising drug targets,” said Kerstin Kleese van Dam, director of Brookhaven Lab’s Computational Science Initiative (CSI).

Using supercomputing resources across the U.S., the scientists will screen the chemical structures of a wide range of small molecules that might be able to block key viral functions. These “virtual” experiments will explore the chemical structures of known drugs that are already licensed and could quickly be repurposed, as well as libraries of small drug-like molecules that could be developed into drugs. Brookhaven scientists are focused on large-scale libraries with billions of chemical structures that could be manufactured quickly for testing.

This research relies on machine learning and other tools of artificial intelligence (AI) running simulations of the interactions between proteins and potential drugs. The virtual screening using these “molecular dynamics” simulations will refine the machine learning and AI approaches so that successive rounds of evaluations create a list of potentially viable small-molecule drug candidates.

As one local example, in a project led by Stony Brook, Lab scientists will be running simulations to see which molecules might block the interaction between the “crown” (or corona) of “spike” proteins on the COVID-19 virus and receptors on human lung cells.

This image shows how the “spike” protein on the virus that causes COVID-19 binds to a receptor protein on the surface of cells that line the human respiratory system (cell membrane shown in green and red at bottom). Understanding how the spike (made of three proteins, red, yellow, and blue) binds with the receptor (angiotensin-converting enzyme 2, or ACE2, purple), and modeling how different molecules might interfere with this interaction, could help scientists develop antiviral drugs. Image courtesy of  SBU Professor Carlos Simmerling and SBU graduate student Lucy Fallon. 

“In a first step, we will be looking at 60 different target sites where a new drug may attach to the virus and one billion drug-like molecules to identify the most promising options for neutralizing the virus to keep it from entering cells,” Kleese van Dam said. Then, only those particularly promising molecules would need to be studied in detail with structural studies at synchrotrons like NSLS-II or cryo-EM facilities.

Kleese van Dam put out a call for volunteers across the Lab who have experience with high performance computing and the Lab’s computing clusters to help make faster progress, saying “We have the data, we have the tools, but need people who can help us to run the programs and check that they ran correctly, and to test an initial set of structures against possible drug targets.”

The response was overwhelming. “We had very quickly a large number of volunteers—more than we could accommodate on our current project—from all across the Lab, including staff from NSLS-II, the Center for Functional Nanomaterials (CFN), high-energy and nuclear physics, and the Collider-Accelerator Department,” Kleese van Dam said.

Many scientists at the Lab’s Office of Science user facilities—which include CFN and the Relativistic Heavy Ion Collider (RHIC) in addition to NSLS-II—have experience dealing with “big data” problems, so this call-to-action was a perfect fit.

“I’m so grateful to those who stepped up so selflessly,” Kleese van Dam said. “We’re compiling a list of all these volunteers so we can deploy them to a range of COVID-19 projects as needed going forward.”

Kleese van Dam’s group is also developing computational tools to help scientists battling COVID-19 keep up with the latest research developments around the world.

“More than 15,000 new papers related to COVID-19 have been published since the start of the outbreak in December 2019, and the quality and relevance of these papers to current research needs varies dramatically,” she said. “We’re developing a ‘natural language processing’ program that will search through a library of all these papers to pull out the most relevant information based on a researcher’s plain-language question.” Using this system, scientists would be able to more easily find and track the latest data on which drugs are in clinical trials, for example, or pull out research on the latest potential targets.

A different kind of computational model developed with help from Brookhaven scientists was designed to simulate the spread of the virus in the Chicago area. This project was led by Sergei Maslov, a former Brookhaven scientist who is now at the University of Illinois at Urbana Champaign and is still a CFN user, with help from CFN’s Alexei Tkachenko. Government officials in Illinois used this model in an early effort to optimize their response to the outbreak there, and ongoing research continues to improve and extend this work.

For the full article and additional graphics, visit https://www.bnl.gov/newsroom/news.php?a=117162.

About Brookhaven National Laboratory

Brookhaven National Laboratory is supported by the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://www.energy.gov/science/


Source: Brookhaven National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in O&G: Deep Sea Drilling – What Happens Now   

June 4, 2020

At the beginning of March I attended the Rice Oil & Gas HPC conference in Houston. That seems a long time ago now. It’s a great event where oil and gas specialists join with compute veterans and the discussion tell Read more…

By Rosemary Francis

NCSA Wades into Post-Blue Waters Era with Delta Supercomputer

June 3, 2020

NSF has awarded the National Center for Supercomputing Applications (NCSA) $10 million for its next supercomputer - named Delta – “which will kick-start NCSA’s next generation of supercomputers post-Blue Waters,” Read more…

By John Russell

Dell Integrates Bitfusion for vHPC, GPU ‘Pools’

June 3, 2020

Dell Technologies advanced its hardware virtualization strategy to AI workloads this week with the introduction of capabilities aimed at expanding access to GPU and HPC services via its EMC, VMware and recently acquired Read more…

By George Leopold

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

AWS Solution Channel

Join AWS, Univa and Intel for This Informative Session!

Event Date: June 18, 2020

More enterprises than ever are turning to HPC cloud computing. Whether you’re just getting started, or more mature in your use of cloud, this HPC Cloud webinar is an excellent opportunity to gain valuable insights and knowledge to help accelerate your HPC cloud projects. Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

NCSA Wades into Post-Blue Waters Era with Delta Supercomputer

June 3, 2020

NSF has awarded the National Center for Supercomputing Applications (NCSA) $10 million for its next supercomputer - named Delta – “which will kick-start NCS Read more…

By John Russell

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This