Brookhaven Lab Teams with Harvard and MIT to Build a Printing Press for Quantum Materials

April 23, 2019

April 23, 2019 — Checking out a stack of books from the library is as simple as searching the library’s catalog and using unique call numbers to pull each book from their shelf locations. Using a similar principle, scientists at the Center for Functional Nanomaterials (CFN)—a U.S. Department of Energy (DOE) Office of Science User Facility at Brookhaven National Laboratory—are teaming with Harvard University and the Massachusetts Institute of Technology (MIT) to create a first-of-its-kind automated system to catalog atomically thin two-dimensional (2-D) materials and stack them into layered structures. Called the Quantum Material Press, or QPress, this system will accelerate the discovery of next-generation materials for the emerging field of quantum information science (QIS).

Structures obtained by stacking single atomic layers (“flakes”) peeled from different parent bulk crystals are of interest because of the exotic electronic, magnetic, and optical properties that emerge at such small (quantum) size scales. However, flake exfoliation is currently a manual process that yields a variety of flake sizes, shapes, orientations, and number of layers. Scientists use optical microscopes at high magnification to manually hunt through thousands of flakes to find the desired ones, and this search can sometimes take days or even a week, and is prone to human error.

Once high-quality 2-D flakes from different crystals have been located and their properties characterized, they can be assembled in the desired order to create the layered structures. Stacking is very time-intensive, often taking longer than a month to assemble a single layered structure. To determine whether the generated structures are optimal for QIS applications—ranging from computing and encryption to sensing and communications—scientists then need to characterize the structures’ properties.

“In talking to our university collaborators at Harvard and MIT who synthesize and study these layered heterostructures, we learned that while bits of automation exist—such as software to locate the flakes and joysticks to manipulate the flakes—there is no fully automated solution,” said CFN Director Charles Black, the administrative lead on the QPress project.

The idea for the QPress was conceived in early 2018 by Professor Amir Yacoby of the Department of Physics at Harvard. The concept was then refined through a collaboration between Yacoby; Black and Kevin Yager, leader of the CFN Electronic Nanomaterials Group; Philip Kim, also of Harvard’s Department of Physics; and Pablo Jarillo-Herrero and Joseph Checkelsky, both of the Department of Physics at MIT.

According to Black, the unique CFN role was clear: “We realized that building a robot that can enable the design, synthesis, and testing of quantum materials is extremely well-matched to the skills and expertise of scientists at the CFN. As a user facility, CFN is meant to be a resource for the scientific community, and QIS is one of our growth areas for which we’re expanding our capabilities, scientific programs, and staff.”

Graphene sparks 2-D materials research

The interest in 2-D materials dates back to 2004, when scientists at the University of Manchester isolated the world’s first 2-D material, graphene—a single layer of carbon atoms. They used a surprisingly basic technique in which they placed a piece of graphite (the core material of pencils) on Scotch tape, repeatedly folding the tape in half and peeling it apart to extract ever-thinner flakes. Then, they rubbed the tape on a flat surface to transfer the flakes. Under an optical microscope, the one-atom-thick flakes can be located by their reflectivity, appearing as very faint spots. Recognized with a Nobel Prize in 2010, the discovery of graphene and its unusual properties—including its remarkable mechanical strength and electrical and thermal conductivity—has prompted scientists to explore other 2-D materials.

Many labs continue to use this laborious approach to make and find 2-D flakes. While the approach has enabled scientists to perform various measurements on graphene, hundreds of other crystals—including magnets, superconductors, and semiconductors—can be exfoliated in the same way as graphite. Moreover, different 2-D flakes can be stacked to build materials that have never existed before. Scientists have very recently discovered that the properties of these stacked structures depend not only on the order of the layers but also on the relative angle between the atoms in the layers. For example, a material can be tuned from a metallic to an insulating state simply by controlling this angle. Given the wide variety of samples that scientists would like to explore and the error-prone and time-consuming nature of manual synthesis methods, automated approaches are greatly needed.

“Ultimately, we would like to develop a robot that delivers a stacked structure based on the 2-D flake sequences and crystal orientations that scientists select through a web interface to the machine,” said Black. “If successful, the QPress would enable scientists to spend their time and energy studying materials, rather than making them.”

A modular approach

In September 2018, further development of the QPress was awarded funding by the DOE, with a two-part approach. One award was for QPress hardware development at Brookhaven, led by Black; Yager; CFN scientists Gregory Doerk, Aaron Stein, and Jerzy Sadowski; and CFN scientific associate Young Jae Shin. The other award was for a coordinated research project led by Yacoby, Kim, Jarillo-Herrero, and Checkelsky. The Harvard and MIT physicists will use the QPress to study exotic forms of superconductivity—the ability of certain materials to conduct electricity without energy loss at very low temperatures—that exist at the interface between a superconductor and magnet. Some scientists believe that such exotic states of matter are key to advancing quantum computing, which is expected to surpass the capabilities of even today’s most powerful supercomputing.

A photo of the prototype exfoliator. The robotic system transfers peeled 2-D flakes from the parent crystal to a substrate. The exfoliator allows scientists to control stamping pressure, pressing time, number of repeated presses, angle of pressing, and lateral force applied during transfer, for improved repeatability.

A fully integrated automated machine consisting of an exfoliator, a cataloger, a library, a stacker, and a characterizer is expected in three years. However, these modules will come online in stages to enable the use of QPress early on.

The team has already made some progress. They built a prototype exfoliator that mimics the action of a human peeling flakes from a graphite crystal. The exfoliator presses a polymer stamp into a bulk parent crystal and transfers the exfoliated flakes by pressing them onto a substrate. In their first set of experiments, the team investigated how changing various parameters—stamping pressure, pressing time, number of repeated presses, angle of pressing, and lateral force applied during transfer—impact the process.

“One of the advantages of using a robot is that, unlike a human, it reproduces the same motions every time, and we can optimize these motions to generate lots of very thin large flakes,” explained Yager. “Thus, the exfoliator will improve both the quality and quantity of 2-D flakes peeled from parent crystals by refining the speed, precision, and repeatability of the process.”

In collaboration with Stony Brook University assistant professor Minh Hoai Nguyen of the Department of Computer Science and PhD student Boyu Wang of the Computer Vision Lab, the scientists are also building a flake cataloger. Through image-analysis software, the cataloger scans a substrate and records the locations of exfoliated flakes and their properties.

A schematic showing the workflow for cataloging flake locations and properties. Image grids of exfoliated samples are automatically analyzed, with each flake tracked individually so that scientists can locate any desired flake on a sample.

“The flakes that scientists are interested in are thin and thus faint, so manual visual inspection is a laborious and error-prone process,” said Nguyen. “We are using state-of-the-art computer vision and deep learning techniques to develop software that can automate this process with higher accuracy.”

“Our collaborators have said that a system capable of mapping their sample of flakes and showing them where the “good” flakes are located—as determined by parameters they define—would be immensely helpful for them,” said Yager. “We now have this capability and would like to put it to use.”

Eventually, the team plans to store a large set of different catalogued flakes on shelves, similar to books in a library. Scientists could then access this materials library to select the flakes they want to use, and the QPress would retrieve them.

According to Black, the biggest challenge will be the construction of the stacker—the module that retrieves samples from the library, “drives” to the locations where the selected flakes reside, and picks the flakes up and places them in a repetitive process to build stacks according to the assembly instructions that scientists program into the machine. Ultimately, the scientists would like the stacker to assemble the layered structures not only faster but also more accurately than manual methods.

The final module of the robot will be a material characterizer, which will provide real-time feedback throughout the entire synthesis process. For example, the characterizer will identify the crystal structure and orientation of exfoliated flakes and layered structures through low-energy electron diffraction (LEED)—a technique in which a beam of low-energy electrons is directed toward the surface of a sample to produce a diffraction pattern characteristic of the surface geometry.

“There are many steps to delivering a fully automated solution,” said Black. “We intend to implement QPress capabilities as they become available to maximize benefit to the QIS community.”

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.


Source: Brookhaven National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

Xilinx Says Its New FPGA is World’s Largest

August 21, 2019

In this age of exploding “technology disaggregation” – in which the Big Bang emanating from the Intel x86 CPU has produced significant advances in CPU chips and a raft of alternative, accelerated architectures... Read more…

By Doug Black

Supercomputers Generate Universes to Illuminate Galactic Formation

August 20, 2019

With advanced imaging and satellite technologies, it’s easier than ever to see a galaxy – but understanding how they form (a process that can take billions of years) is a different story. Now, a team of researchers f Read more…

By Oliver Peckham

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Keys to Attracting the Newest HPC Talent – Post-Millennials

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

For engineers and scientists growing up in the 80s, the current state of HPC makes perfect sense. Read more…

Singularity Moves Up the Container Value Chain

August 20, 2019

The enterprise version of the Singularity HPC container platform released this week by Sylabs is designed to allow users to create, secure and share the high-end containers in self-hosted production deployments. The e Read more…

By George Leopold

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

IBM Deepens Plunge into Open Source; OpenPOWER to Join Linux Foundation

August 20, 2019

IBM today announced it was contributing the instruction set (ISA) for its Power microprocessor and the designs for the Open Coherent Accelerator Processor Inter Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This